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Abstract

Instance segmentation is critical in biomedical imaging to
accurately distinguish individual objects like cells, which
often overlap and vary in size. Recent query-based meth-
ods, where object queries guide segmentation, have shown
strong performance. While U-Net has been a go-to architec-
ture in medical image segmentation, its potential in query-
based approaches remains largely unexplored. In this work,
we present IAUNet, a novel query-based U-Net architec-
ture. The core design features a full U-Net architecture, en-
hanced by a novel lightweight convolutional Pixel decoder,
making the model more efficient and reducing the number
of parameters. Additionally, we propose a Transformer de-
coder that refines object-specific features across multiple
scales. Finally, we introduce the 2025 Revvity Full Cell Seg-
mentation Dataset, a unique resource with detailed anno-
tations of overlapping cell cytoplasm in brightfield images,
setting a new benchmark for biomedical instance segmenta-
tion. Experiments on multiple public datasets and our own
show that IAUNet outperforms most state-of-the-art fully
convolutional, transformer-based, and query-based mod-
els and cell segmentation-specific models, setting a strong
baseline for cell instance segmentation tasks. Code is avail-
able at https://github.com/SlavkoPrytula/
IAUNet

1. Introduction

Accurate cell instance segmentation is crucial in biomedical
imaging [1], as it enables the precise identification and anal-
ysis of individual cells. This process is essential for under-
standing cellular behaviors and disease mechanisms [24].
However, the diverse and irregular shapes of cells present
significant challenges for segmentation algorithms [35, 46].
Variations in cell morphology, overlapping structures, and
differing imaging conditions can lead to segmentation er-
rors [1]. Addressing these challenges requires the develop-
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ment of advanced segmentation models capable of handling
the complexities associated with cell shapes. Deep learn-
ing models have driven substantial progress in cell segmen-
tation, often surpassing traditional methods [21, 42, 52].
However, cell segmentation remains challenging due to het-
erogeneous cell appearances, overlaps, and varied object
densities across different microscopy modalities, requiring
models that generalize well across conditions.

Brightfield microscopy, valued for its simplicity and af-
fordability, presents unique challenges for segmentation [1].
Unlike fluorescence microscopy, which requires staining,
and phase-contrast microscopy, which relies on specialized
optics to enhance contrast in transparent specimens, bright-
field uses natural light alone [45]. This makes brightfield
ideal for real-time observation in both research and clinical
settings [1, 36, 51]. However, brightfield images are inher-
ently low-contrast, noisy, and variable, making precise cell
segmentation difficult and underscoring the need for spe-
cialized approaches tailored to this modality.

Many previous works have adapted instance segmenta-
tion models from natural images to medical imaging with-
out model-specific adjustments [22, 40, 50]. In contrast to
many of these methods, U-Net [42] has long been a go-to ar-
chitecture for semantic segmentation. Its lightweight frame-
work, characterized by skip connections and an encoder-
decoder structure, enables precise localization and the ef-
fective capture of intricate details, making it especially
well-suited for biomedical applications. U-Net’s efficiency
is particularly advantageous when working with smaller mi-
croscopy datasets, as it typically requires less data to train
compared to more complex models. This is why we chose
to focus on U-Net in our work, building on its established
popularity and applicability to microscopy data.

Building on the success of DETR [5] in object detec-
tion, query-based single-stage instance segmentation meth-
ods [7-9, 14, 20, 28] have gained prominence. These meth-
ods move away from traditional convolutional approaches,
utilizing the powerful attention mechanism [49] together
with learnable queries to directly predict object classes and



segmentation masks in an end-to-end fashion. However,
these models typically rely on single-level features to gener-
ate queries, refining them without leveraging the full range
of features available from skip connections and decoder fea-
ture maps. This limits their ability to capture the rich multi-
scale context necessary for precise instance refinement.

To address these limitations, we bridge the gap between
the U-Net model, widely used in biomedical imaging, and
the task of instance segmentation. We present IAUNet,
a novel architecture that enhances U-Net with instance-
awareness through query-based mechanisms. This design
incorporates a lightweight convolutional Pixel decoder, en-
abling the model to scale effectively with larger backbones
while maintaining strong performance across both small
and large datasets. IAUNet also introduces a Transformer
decoder for multi-scale object feature refinement.

As part of our contributions, we introduce the 2025
Revvity Full Cell Segmentation Dataset, specifically de-
signed for benchmarking model performance. The dataset
includes hundreds of carefully annotated cell instances in
high-resolution brightfield images, each thoroughly hand-
labeled and validated. One of its unique features is the pre-
cise annotation of cell borders, even in cases of overlapping
cells, allowing it to capture complex cell interactions. This
dataset is a valuable resource for evaluating model accuracy
in capturing fine details and handling challenging segmen-
tation tasks with intricate cell morphologies.

Our main contributions are as follows:

— We introduce a lightweight Pixel-Transformer de-
coder within U-Net for multi-scale object feature re-
finement, efficiently scaling with larger backbones.

— We introduce a novel 2025 Revvity Full Cell Segmen-
tation Dataset with detailed annotations and provide a
benchmark for instance segmentation.

2. Related Work

Instance segmentation methods are generally categorized
into region-based, query-based, and specialized approaches
that often require preprocessing.

Region-based Methods exemplified by Mask R-CNN [17,
22, 41], have set a standard in natural image segmentation
with their proposal-based structure. Building on Faster R-
CNN [41], Mask R-CNN adds a mask prediction branch for
end-to-end instance segmentation by first detecting bound-
ing boxes and then applying Region of Interest (Rol) op-
erations like Rol-Pooling [17] or Rol-Align [22] to extract
features for classification and mask generation. However,
these two-stage methods often generate numerous redun-
dant region proposals, reducing efficiency [10, 20]. Al-
though they perform well on many benchmarks, their re-
liance on small Rol regions frequently leads to coarse mask
predictions. Some methods focus on enhancing the pre-
cision of detected bounding boxes [3], while others, like
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PointRend [26], specifically address low-quality segmen-
tation masks by refining boundaries at uncertain points to
improve segmentation quality. However, even with these
advancements, traditional region-based methods face lim-
itations in biomedical image segmentation [7], where ob-
jects have complex shapes, orientations, and sizes. In these
settings, traditional axis-aligned bounding boxes struggle
to capture detailed contours, particularly for irregular and
overlapping cellular structures [15, 25].

Specialized Cell Instance Segmentation Methods like
StarDist [43] segment biomedical images by representing
objects as star-convex polygons, predicting distances from
a central point to boundaries in multiple directions. This
method, along with other similar approaches like Deep-
Watershed [2] and Micro-Net [39], works well for star-
shaped or rounded cells but struggles with irregular, elon-
gated shapes and overlapping cells. CellPose [48], by con-
trast, similar to Hover-Net [ 18], uses a U-Net to predict hor-
izontal and vertical gradients alongside a binary cell map,
creating a vector field that directs pixels toward the cell
center. While this method effectively separates individual
cells, it often relies on an additional size model [37] to es-
timate object diameters, which becomes challenging with
varying cell sizes and shapes. Although these methods of-
fer advancements over traditional techniques, they remain
limited in accurately segmenting overlapping cells and han-
dling complex cellular morphologies.

Query-based Methods have gained popularity since the in-
troduction of DETR [5], which demonstrated the potential
of Transformer-based architectures for instance segmenta-
tion. Unlike traditional region-based models, query-based
methods use object queries to directly predict object in-
stances, removing the need for predefined bounding boxes.
Building on DETR, models like Mask2Former [9] and
Fastlnst [20] introduced masked attention to improve con-
vergence and segmentation precision. These models heavily
rely on producing fine features using MSDeformAttn Trans-
former [54] Pixel decoder. MaskDINO [28] further ad-
vances instance segmentation by adding a mask prediction
branch that generates high-resolution binary masks through
query embeddings for unified segmentation tasks. Recently,
adaptations of query-based models have also emerged in
the biomedical domain. For example, Cell-DETR [38]
adapts DETR specifically for cell segmentation by leverag-
ing queries to detect individual instances. The model uses
the final feature map of the encoder for query initialization,
limiting multi-scale query refinement across decoder fea-
tures. Its segmentation head applies multi-head attention
between encoder and decoder features, followed by a CNN
decoder. However, it merges queries with decoder features
only at the lowest layer, forcing the CNN decoder to handle
most of the instance separation. This makes the model in-
efficient for high-resolution inputs with many queries. Ad-
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Figure 1. Model overview. Overview of the IAUNet architecture, highlighting the Pixel and Transformer Decoder stages. Given an
input image I, the encoder extracts multi-scale features as skip connections for the Pixel decoder. At each decoder block, we add skip
connections X to the main features X and inject normalized coordinate features for CoordConv. Stacked depth-wise convolutions with
an SE block refine spatial information, generating mask features X,,,. The Transformer decoder then processes learnable queries g through
three Transformer blocks per layer, iteratively refining them with X,,,. Deep supervision loss is applied after each Transformer block using

updated queries ¢ and high-resolution mask features.

ditionally, Cell-DETR applies softmax to suppress overlap-
ping predictions, reducing its ability to segment occluding
cells effectively. Recent work, such as PCTrans [7], built
on Mask2Former, introduces a position-guided transformer
with a query contrastive loss. Similar to DETR, position
guidance is done by predicting the normalized center co-
ordinates of each object. While natural objects are often
convex, cells present more complex shapes, with centers
that often fall outside boundaries, particularly in elongated
structures [11], making mask representation less effective.

All previous query-based models [5, 7, 9, 28] have
been designed around the idea of a Transformer-based
Pixel decoder, which raises concerns about scalability to
smaller datasets. Unlike these models, we propose a
lightweight Pixel decoder that improves performance on
smaller datasets. In Tab. 2, we show that IAUNet consis-
tently outperforms state-of-the-art models across different
backbones while maintaining strong results on large-scale
datasets (Tab. 1). Our experiments show that IAUNet out-
performs most alternatives while using fewer parameters
and achieving higher efficiency.

3. Model Overview

The IAUNet model follows a U-Net design, illustrated in
Fig. 1. The model consists of three main components: an
encoder, a Pixel decoder, and a Transformer decoder. Given
an input image I € R7*WX3 the encoder produces four
multi-scale semantic feature maps at resolutions of 1/4,
1/8, 1/16, and 1/32 relative to the original image. These
feature maps are utilized as skip connections in the decoder.
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The Pixel decoder first processes these features to generate
the main decoder features X. At each decoder layer, these
features pass through a lightweight mask branch to produce
refined mask features, X,,, which then interact with object
queries. The Transformer decoder further refines instance
queries with mask features. This process is iterative, with
updated queries passing through each decoder stage. In the
final stage, the mask head combines mask features and in-
stance queries to produce output instance masks.

3.1. Pixel Decoder

In the biomedical domain, U-Net [42], with all its variants
[4, 6, 19, 52], still holds the ground as the most superior
network for accurate segmentation. This is primarily due
to the design of U-Net’s decoder, which maintains high se-
mantic consistency through the use of skip connections. We
include a convolutional decoder, referred to as the Pixel
decoder. Our Pixel decoder (Fig. 1, middle panel) works
with two feature types: main features X and mask features
X,n. The main features serve a similar role to those in the
vanilla U-Net, aggregating spatial context across the image
using skip connections Xs. The mask features refine X
and capture richer semantic information. All these features
are specifically designed to support instance segmentation
and are tightly integrated with the Transformer decoder (see
Sec. 3.2).

)]
2

X = SE(G,([XS,X']) + X’)

X = G (X,’n + X)
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Figure 2. LIVECell. Visualization of instance segmentation predictions on the LIVECell dataset across different state-of-the-art models
(using R50 backbone). We also report per-image AP score. Last columns shows ground-truth annotations.

At each level, the corresponding skip connection X is
first mapped to a 256-dimensional feature map. Then it gets
concatenated with the upscaled decoder features X’ from
the previous layer and passed through a lightweight dou-
ble 3 x 3 point-wise convolution, batch normalization, and
ReLU layer G, (Eq. (1)). Next, we apply a Squeeze-and-
Excitation (SE) [23] block to produce the final main fea-
tures X. Next, we update mask features by adding the main
features X and the upscaled mask features X/, from the
previous layer followed by two stacked 3 x 3 convolutional
layers G, Eq. (2). The whole process preserves multi-scale
semantic information while maintaining a lightweight struc-
ture. The updated mask features are then used for query re-
finement in the corresponding Transformer blocks. Finally,
we use bilinear upscaling to propagate all features to the
next decoder layer.

3.2. Transformer Decoder

Object queries are central to instance segmentation [9,
12, 14, 20], serving as learnable embeddings that repre-
sent each object as a unique D-dimensional feature vec-
tor. These queries group pixel features relevant to each
specific object, typically through a cross-attention mecha-
nism. They are particularly important in Transformer archi-
tectures [5], where they are processed and refined in an end-
to-end manner. In existing models such as DETR [5], De-
formable DETR [53], MaskFormer [8], and Mask2Former
[9], queries are central to representing objects for segmen-
tation or detection tasks. In our work, we use /N learnable
queries ¢ € RV*256_ Each query is thus a 256-dimensional
representation, capturing the finer semantic object features.
These instance queries are progressively refined with mask
features X,, through a multi-layer Transformer decoder
(see Sec. 3.2). At each decoder layer | € [1, L], we use
three Transformer decoder layers. Queries from the pre-
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vious decoder layer are iteratively processed through these
layers (Fig. 1, red block) with the corresponding flattened
mask features X,, € RE*256 where L = H; x W; for the
[-th decoder layer.

3.2.1. Positional Embeddings

To maintain spatial awareness, which is crucial for
Transformer-based models, we add N learnable positional
embeddings to both instance queries. Following the pre-
vious work [5], we add sinusoidal positional embeddings
epos € REWIXD o the mask X,,.

3.2.2. Instance Queries Update

We update NV instance queries with the mask features X,
using the cross-attention layer (Fig. 1, red block) followed
by the self-attention layer between queries and FFN layer.
Thus, all queries attend to each other, ensuring better object
separation. The update is expressed as follows:

Xl = softmax (QlKlT) Vi+ X1 3)
X; = FFN(X)) @)
where Q; = fo(q) € RY*?5 represents the trans-

formed queries at layer [, and the keys and values K;,V; €
RHtW1x256 are computed from the mask features X,,. The
queries are updated sequentially within Transformer blocks
at each decoder layer.

3.2.3. Mask Head

To keep the prediction process lightweight without per-
formance loss, we fuse only high-resolution features. As
shown in (Fig. 1, red arrows), we construct a pixel embed-
ding map by combining the 1/4 resolution backbone fea-
ture map X, with an upsampled 1/8 resolution mask fea-
tures X, from the Pixel decoder. Specifically, we apply
two linear projections on the refined instance queries g to



Figure 3. Revvity-25. Visualization of instance segmentation predictions on the Revvity-25 dataset across different state-of-the-art models
(using R50 backbone). Last columns shows ground-truth annotations. IAUNet as well as MaskDINO show good generalization across tiny
details and overlaping instances. We also report per-image AP score.

obtain mask embeddings g. and object class scores. The fi-
nal mask prediction is obtained by taking the dot product of
each mask embedding with this fused feature map:

m=qc® M (]:(Xb) +u(Xm)) ) (5

where M is the segmentation head, F is a convolu-
tional layer that adjusts the channel dimensions to match
the Transformer hidden space, and I/ is a simple 2 upsam-
pling function applied to X,,,. Besides, each instance query
predicts the object class probability, including a ’no object”
(©). During inference, we re-score the predicted masks.
For each instance, we calculate the maskness metric [9],
denoted as p; = + vazl m;, where m € {M,})_, is the
predicted instance mask. The combined confidence score
for each instance is then computed by multiplying the class
probability score ¢; with the maskness score p;: ¢; = ¢; - ;.

3.3. Mask Level Matching

During training, the model outputs {M, }_; predicted
masks, where N > M, the number of ground truth masks
{Gr}~,. To compute losses on matched predictions, we
perform bipartite matching between {M,,} and {G},} using
the Hungarian algorithm [47], which finds the optimal per-
mutation ¢ that minimizes the matching cost:

M

o= arg grlelfslgcmatch<Mo-(i), G;). (6)

For the matching cost, we use a combination of classifica-
tion and mask costs:

Ematch = )\cls . Ecls + )\dice : £dice + )\bce : Lbce (7)

Following [9] we set Ags = 1.0, Agice = 2.0, and
Abee = 5.0 to control the weight of each cost term. Here,
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Ls represents the cross-entropy loss for object classifica-
tion, with a ’no object” class weighted at 0.1. The terms
Lypce and Lg;ce denote the binary cross-entropy loss and Dice
loss, respectively, for the segmentation masks [34].

For the loss function, we align it with the matching cost
by applying the same coefficients to ensure consistency.
The final loss function is defined as:

L= )\cls . £cls + )\dice ' £dice + )\bce : Ebce (8)

4. Experiments

In this section, we evaluate our [AUNet on multiple
datasets, including our novel Revvity-25 dataset. We also
compare it with multiple state-of-the-art models in terms of
segmentation performance. Besides, we conduct ablation
studies and show the effectiveness of our model compo-
nents. To provide a comprehensive comparison, we use a
range of datasets:

LIVECell [13] is one of the most extensive datasets regard-
ing images and annotated cells for instance segmentation.
It consists of 5,239 high-resolution phase-contrast images
(520x704 pixels) with over 1.6 million expert-validated an-
notated cells. It includes eight cell types with varied shapes
and densities.

EVICAN?2 [44] is the most heterogeneous dataset for cell
segmentation, containing 5,237 microscopy images across
brightfield, phase contrast, and fluorescence modalities,
with 52,959 annotated cell and nucleus instances. It in-
cludes training and validation sets with 4,640 partially an-
notated images and a test set of 98 fully annotated images.
The test set is categorized by difficulty based on image qual-
ity: easy, medium, and difficult.

ISBI2014 [33] is a dataset from the Overlapping Cervical
Cytology Image Segmentation Challenge. It includes 16



LIVECell EVICAN2 g EVICAN2 py EVICAN2 p 1SBI2014
Models ‘ backbones num-queries AP AP50| AP AP50| AP AP50| AP AP50| AP APso| #params. FLOPs
Models with Convolution-Based Backbones
Mask R-CNN [22] R50 100 447 742 | 481 759 | 207 425 19.1 39.8 | 589 88.7 44M 115G
PointRend [26] R50 100 440 735 | 266 479 | 18.0 385 134 283 | 60.0 88.7 S56M 66G
Mask2Former [9] R50 100 437 738 | 534 89.1 | 29.1 549 | 242 504 | 585 815 44M 67G
MaskDINO [28] R50 100 433 735 | 507 839 | 293 579 | 220 419 | 554 86.8 44M 64G
TIAUNet (ours) R50 100 453 753 | 580 91.8 | 321 59.0 | 249 454 | 560 850 39M 49G
Mask R-CNN [22] R101 100 442 732 | 415 699 | 233 469 | 17.8 36.7 | 60.7 88.8 63M 134G
PointRend [26] R101 100 44.0 737 | 413 652 | 202 393 148 321 | 603 89.2 75SM 86G
Mask2Former [9] R101 100 440 735 544 878 27.1 51.7 204 424 59.5 88.6 63M 86G
MaskDINO [28] RI101 100 434 736 | 53.7 85.0 | 31.8 592 | 271 513 | 557 874 63M 84G
IAUNet (ours) R101 100 454 755 | 583 927 | 329 596 | 269 500 | 565 87.1 58M 69G
Models with Transformer-Based Backbones
Mask R-CNN [22] Swin-S 100 443 733 | 526 917 | 27.0 592 | 202 502 | 619 90.7 69M 141G
PointRend [26] Swin-S 100 439 735 | 55.1 89.2 | 30.1 61.6 | 244 546 | 621 91.0 81M 93G
Mask2Former [9] Swin-S 100 446 743 | 652 968 | 362 66.7 | 309 627 | 57.1 873 69M 93G
MaskDINO [28] Swin-S 100 439 738 | 570 869 | 33.6 649 | 276 569 | 527 853 71M 181G
MaskDINO [28] Swin-S 300 448 75.1 | 565 91.8 | 350 70.7 | 302 643 | 512 834 71M 187G
IAUNet (ours) Swin-S 100 454 754 | 588 931 | 322 619 | 27.7 541 | 61.1 90.1 64M 76G
IAUNet (ours) Swin-S 300 456 764 | 609 93.6 | 332 62.0 | 296 580 | 61.8 89.8 64M 87G
Mask R-CNN [22] Swin-B 100 442 731 | 520 89.0 | 267 603 | 248 555 | 624 915 107M 186G
PointRend [26] Swin-B 100 440 737 | 586 91.0 | 341 646 | 258 520 | 627 915 119M 137G
Mask2Former [9] Swin-B 100 449 74.7 55.0 92,5 314 60.9 27.7 56.6 58.1 88.4 107M 138G
MaskDINO [28] Swin-B 100 443 741 | 573  91.1 | 373 757 | 30.1 65.6 | 535 86.6 110M 226G
MaskDINO [28] Swin-B 300 452 758 | 579 91.6 | 391 788 | 340 723 | 533 8438 110M 232G
TIAUNet (ours) Swin-B 100 455 756 | 59.6 935 | 342 657 | 289 569 | 61.5 90.8 102M 120G
TAUNet (ours) Swin-B 300 458 76.7 | 61.2 948 | 380 69.6 | 307 599 | 63.0 915 102M 132G
Specialized Cell Seg tion Methods
CellPose [48] - 345 60.1 | 09 2.8 0.1 0.3 0.0 0.0 405 693 6.6M 163.6G
CellPose + SM [37] - 349 604 | 87 168 | 1.6 4.4 23 6.8 41.6 704 6.6M 163.6G
CellIDETR [38] R34 100 139 327 | 0 0.1 0.0 0.0 0.0 0.0 0.046 0.135 5TM 3.6T
IAUNet (ours) R50 100 453 753 | 58.0 91.8 | 321 59.0 | 249 454 | 56.0 85.0 39M 49G
YOLO Family
YOLOvV8-M [40] - 37.5 72.2 43.8 82.3 275 57.1 20.0 462 54.9 90.7 27.2M 1104G
YOLOVS-L [40] - 405 725 | 447 83.1 | 28.1 582 | 203 46.1 | 551 91.1 45.9M 220.8G
YOLOV8-X [40] - 41.1  73.1 | 458 85.6 | 289 59.2 | 20.7 473 | 553 914 71.8M 344.5G
TAUNet (ours) Swin-S 100 454 754 | 588 931 | 322 619 | 277 541 | 61.1 90.1 64M 76G
YOLOVY-E [50] - 412 732 | 456 844 | 272 579 | 201 473 | 533 91.6 27.8M 159.1G
YOLOV9-C [50] - 414 731 | 459 856 | 283 59.8 | 222 499 | 557 9l.1 60.5M 248.1G
TIAUNet (ours) Swin-S 100 454 754 | 588 931 | 322 619 | 277 541 | 61.1 90.1 64M 76G
SAM Family
SAM-B (points) [27] - 5.0 124 | 284 560 | 54 138 | 3.2 7.2 338 518 90M 742G
SAM-B (boxes) [27] - 243 569 | 550 96.6 | 386 912 | 348 823 | 59.6 928 90M 742G
TAUNet (ours) Swin-S 100 454 754 | 588 93.1 | 322 619 | 27.7 54.1 | 61.1  90.1 64M 76G
SAM-L (points) [27] - 6.3 13.6 28.1 54.1 49 12.4 3.2 7.5 32.8 51.0 308M 2.6T
SAM-L (boxes) [27] - 292 652 | 572 96.6 | 458 953 | 39.7 88.6 | 60.8 93.6 308M 2.6T
IAUNet (ours) Swin-B 300 458 76.7 | 61.2 948 | 38.0 69.6 | 307 599 | 63.0 915 102M 132G

Table 1. Instance segmentation on LIVECell, EVICAN2 (Easy, Medium, Difficult), and ISBI2014. IAUNet outperforms strong query-
based Mask2Former and MaskDINO baselines for both AP and AP5¢ when training with fewer parameters. For a fair comparison, we only
consider single-scale inference and models trained until full convergence. IAUNet remains efficient across different backbones.

real extended depth-of-focus (EDF) cervical cytology im-
ages and 945 synthetic images. The dataset provides high-
quality pixel-level annotations for nuclei and cytoplasm,
with a resolution of 512 x 512. We follow the challenge
setting [33], using 45 synthetic images for training, 90 for
validation, and 810 for testing.

One of our key contributions in this paper is a novel
cell instance segmentation dataset named Revvity-25. It
includes 110 high-resolution 1080 x 1080 brightfield im-
ages, each containing, on average, 27 manually labeled and
expert-validated cancer cells, totaling 2937 annotated cells.

To our knowledge, this is the first dataset with accurate and
detailed annotations for cell borders and overlaps, with each
cell annotated using an average of 60 polygon points, reach-
ing up to 400 points for more complex structures. Revvity-
25 dataset provides a unique resource that opens new possi-
bilities for testing and benchmarking models for modal and
amodal semantic and instance segmentation.

4.1. Implementation Details

All experiments were conducted on a single Tesla V100
GPU with 32GB memory. We adopt the training scheme
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Revvity-25

Models ‘ backbones num-queries AP APsg AP75| APs APps  APp | #params. FLOPs
Models with Convolution-Based Backbones

Mask R-CNN [22] R50 100 397 712 374 | 0.6 19.0 446 44M 115G
PointRend [26] R50 100 422 794 409 | 04 217 473 S6M 66G
Mask2Former [9] R50 100 464 798 499 | 07 257 528 44M 67G
MaskDINO [28] R50 100 456 804 482 | 1.8 223 518 44M 64G
TAUNet (ours) R50 100 49.7 821 548 | 0.6 273  56.0 39M 49G
Mask R-CNN [22] R101 100 40.7 775 399 | 04 20.1 458 63M 134G
PointRend [26] R101 100 429 793 425 | 0.0 184 489 75M 86G
Mask2Former [9] R101 100 472 801 51.8 | 1.7 257 533 63M 86G
MaskDINO [28] R101 100 473 810 504 | 09 23.0 535 63M 384G
IAUNet (ours) R101 100 51.5 847 561 | 1.7 29.2 578 58M 69G
Models with Transformer-Based Backbones

Mask R-CNN [22] Swin-S 100 247 634 125 | 0.0 73 28.9 69M 141G
PointRend [26] Swin-S 100 436 80.0 430 | 05 21.5 489 81IM 93G
Mask2Former [9] Swin-S 100 512 833 564 | 2.7 277  58.0 69M 93G
MaskDINO [28] Swin-S 100 503 832 539 | 47 27.6  56.1 71M 181G
MaskDINO [28] Swin-S 300 494 836 533 | 29 258 553 71M 187G
IAUNet (ours) Swin-S 100 53.0 8.7 570 | 13 29.7 59.1 64M 76G
TIAUNet (ours) Swin-S 300 533 860 596 | 1.6 294 59.8 64M 87G
Mask R-CNN [22] Swin-B 100 27.1 649 172 | 0.1 9.7 31.2 107M 186G
PointRend [26] Swin-B 100 452 80.1 479 | 0.1 23.0 509 119M 137G
Mask2Former [9] Swin-B 100 520 836 584 | 1.1 278  59.0 107M 138G
MaskDINO [28] Swin-B 100 505 835 549 | 2.0 27.1 564 110M 226G
MaskDINO [28] Swin-B 300 504 843 548 | 0.8 263  56.6 110M 232G
TAUNet (ours) Swin-B 100 535 861 594 | 0.8 305 59.7 102M 120G
TAUNet (ours) Swin-B 300 537 865 594 | 1.0 30.0 60.3 102M 132G

Table 2. Instance segmentation on our Revvity-25 dataset. IAUNet outperforms strong query-based Mask2Former and MaskDINO
baselines as well as other state of the art models when training with fewer parameters. For a fair comparison, we only consider single-scale
inference and models trained until full convergence. IAUNet also efficiently scales with more queries while remaining efficient.

published in earlier works [9]. We use the CosineAnneal-
ingLR scheduler [3 1] with a minimum learning rate of le-6,
and the AdamW optimizer [32] with an initial learning rate
of 1e-4 and weight decay of 0.05. During training, we em-
ploy longest-side resizing to scale all images to 512 x 512
pixels, preserving the original aspect ratio. For augmenta-
tion, we apply scale jittering [16] within a scale range of
0.8 to 1.5, followed by fixed-size cropping to 512 x 512
and random flipping. All models were trained to full con-
vergence with a batch size of 8. Unless specified, we apply
the same resizing process during inference, using a consis-
tent mask prediction threshold of 0.5 across all models.

4.2. Main Results

In this section, we outline the dataset setup for training and
present the results. For the LIVECell dataset, we preprocess
images by randomly cropping them to a maximum of 100
instances, ensuring consistency in prediction counts across
datasets. We use the original train, validation, and test splits
are used for all models. For the ISBI2014 dataset, we fol-
low the original train, validation, and test splits. All mod-
els, except CellPose [48], are trained to segment both cell
and nuclei classes. Since CellPose does not support multi-
class segmentation by default, we train separate models
for each class and average the performance. The Revvity-
25 dataset is divided equally into train and test sets, each
containing 55 images. For EVICAN2, we report results
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on the easy, medium, and difficult test sets. A maximum
of 100 queries is set across all datasets. For example,
in Tab. 1, IAUNet is compared with state-of-the-art mod-
els across diverse datasets. In models with convolution-
based backbones, IAUNet with ResNet-50 achieves an AP
of 45.3 and AP5( of 75.3 on LiveCell. It outperforms Mask
R-CNN, PointRend, Mask2Former, and MaskDINO while
using fewer parameters (39M) and lower FLOPs (49G).
With a ResNet-101 backbone, IAUNet records an AP of
45.4 and APs5q of 75.5. IAUNet also scales better com-
pared to MaskDINO when using transformer-based back-
bones. While IAUNet performs best on LIVECell but
has room for improvement on ISBI2014, where the low
object count leads to some queries predicting duplicates.
Among specialized cell segmentation methods, IAUNet
outperforms CellPose, CellPose + SM, and CellDETR.
CelIDETR, scaled to 100 objects with a softmax head on
high-resolution images, has high computational cost and pa-
rameter count, making it unsuitable for some datasets. Cell-
Pose struggles to generalize when object sizes differ signifi-
cantly between train and test sets, as seen in EVICAN2, due
to its reliance on object diameter for post-processing.

In Fig. 3, we visualize the predictions and compute
an image-wise AP score. ITAUNet consistently outper-
forms other state-of-the-art models. TAUNet visibly of-
fers more detailed segmentation, capturing longer pixel re-
lationships and effectively handling overlapping regions in



Pixel Decoder AP AP59 APrs5| FLOPs
+ full skip 447 739 489 146G
+1 x 1skipconcat | 442 73.8 483 135G
+1 x 1 skip add 443 733 482 132G
+ light mask head 438 731 474 42G

Table 3. Pixel Decoder Variants (Skip Connections). We re-
tain skip connection concatenation as in Eq. (1) and introduce a
lightweight mask head.

some cases. In Tab. 2, we demonstrate I[AUNet’s strengths
on the Revvity-25 dataset, where it achieves the highest
scores across multiple backbones, with an AP of 49.7 us-
ing ResNet-50 and 53.7 with Swin-B.

4.3. Ablation Studies

In this section, we present an ablation study to evaluate the
impact of each component in our model architecture. We fo-
cus on analyzing the contributions of the Pixel decoder and
the Transformer decoder to overall model performance. All
ablation studies were conducted on the LIVECell dataset.
Skip Connections. IAUNet builds on the U-Net architec-
ture. Tab. 3 presents the impact of different skip connec-
tion configurations. The model performs best with full skip
connections over main features X, where channels are not
reduced. To balance computational efficiency, skip chan-
nels are reduced to 256 via 1 x 1 convolutions before fus-
ing features using concatenation or addition. Concatenation
produces optimal performance and stability, while addition
creates an FPN-like [29] structure in the decoder with a fur-
ther performance drop. Finally, adding a light mask head to
produce high-resolution features further reduces the FLOP
count to 42G without a significant performance drop.

Pixel Decoder. In Tab. 4, we study each component of the
Pixel decoder separately. To further refine features in the
Pixel decoder, decoupling mask features with a dedicated
mask branch helps. To improve scalability, we reduce the
feed-forward dimension to 1024 and add a Squeeze-and-
Excitation [23] block to enhance feature representation. We
observe that the model benefits from additional spatial in-
formation for multiple grouped objects of irregular shapes.
Using CoordConv [30] at each level enriches the main fea-
tures X before further processing, helping the model better
capture object locations and improve translation awareness.
This modification improves segmentation performance, in-
creasing AP to 44.7.

Transformer Decoder. We evaluate the impact of scaling
the Transformer decoder in Tab. 4. First, we introduce three
Transformer decoder blocks per decoder layer, resulting in
a total of 3L Transformer blocks. We explore two main
strategies for refining object queries. The first approach, in-
spired by [9], follows a Round-Robin cycle update, where
queries are refined in one Transformer block from each de-
coder layer at a time and passed to the next, forming a cy-
cle that returns to low-resolution features. In contrast, we
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Decoder AP APsg AP75| #params. FLOPs

TAUNet (R50) 438 731 474 34M 42G
+ mask branch X, 440 732 479 34M 142G
+FFN (2048 — 1024) | 44.1 732 48.0 32M 42G
+ SE block [23] 442 733 481 32M 42G
+ CoordConv [30] 447 741 487 32M 42G
+ L (1 — 3) (cycle.) 443 740 481 39M 49G
+ L (1 — 3)(seq.) 45.1 744 494 39M 49G
+ deep_supervision 453 753 494 39M 49G

Table 4. Decoder. We investigate the benefit of adding different
decoder components. Adding CoordConv [30] improves object lo-
calization. Scaling the Transformer decoder with deep supervision
shows best performance.

num_queries ‘ AP AP59 APr5| FLOPs
100 453 753 494 49G
300 459 765 504 61G
500 46.1 768 50.8 73G
1000 453 763  50.0 104G

Table 5. Num. queries. Scaling number of object queries benefits
the model.

propose a sequential (seq.) update strategy, where object
queries are refined within all decoder blocks per decoder
layer first, increasing AP to 45.1. Building on this, we
apply deep supervision by computing the loss after each
Transformer decoder layer using the updated queries and
high-resolution Pixel decoder features X,,,. Additionally, in
Tab. 5, we evaluate the scalability of the number of queries,
showing that the model achieves peak performance as the
number of queries increases.

5. Conclusions

We introduce TAUNet, a novel query-based U-Net ar-
chitecture with a lightweight convolutional Pixel decoder
and a Transformer decoder that supervises object-specific
queries for instance segmentation in biomedical imaging.
Our model outperforms leading methods, particularly for
medium and large objects, and sets a strong baseline for
cell segmentation tasks, as demonstrated on our Revvity-
25 Dataset. While IAUNet performs well in most tasks, it
struggles with small object segmentation and could benefit
from optimization for high-instance images. Future work
will focus on improving performance in these areas.
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