This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Real-Time Ultra-Fine-Grained Surgical Instrument Classification

Gino DiMatteo'
Adam E. Goode?

Md. Atabuzzaman'

Hani Alomari!

David Ryan King?

'Virginia Tech, Blacksburg, Virginia, USA

{atabuzzaman, ginod25, hani, cwtang, christhomas}@vt.edu

Chiawei Tang! Connor Hale?
Chris Thomas!

2Carilion Clinic, Roanoke, Virginia, USA

{cehale, aegoode, drking}QRcarilionclinic.org

.

Figure 1. Surgical instruments from Eye Vitrectomy (1st row), Major Laparotomy and Minor Laparotomy trays (2nd row). Each image
shows a different instrument class, though items within each colored group (green, red, and purple) look nearly identical despite their subtle
differences. Data from Hospital ‘X’ (Carilion Clinic, Roanoke, Virginia, USA) shows roughly 80% of trays have problems like miscounts
or wrong instruments, sometimes leading to surgery cancellations when issues are not caught during pre-operative checks.

Abstract

Accurate classification of ultra-fine-grained surgical instru-
ments can significantly reduce the rate of canceled or post-
poned surgical procedures and improve a hospital’s over-
all operational efficiency. However, accurately classify-
ing these instruments is challenging due to the vast num-
ber of surgical instruments in a hospital’s Central Sterile
Services Department (CSSD) and their ultra-fine-grained
distinctions. To address this challenge and assist CSSD
technicians, we propose a real-time ultra-fine-grained sur-
gical instrument classification system. Our system consists
of a unique open-environment image acquisition platform
and multi-view CNN and transformer-based architectures
to capture and classify multi-view images of instruments in
real-time. We train models on images from three globally
recognized surgical trays: Eye Vitrectomy, Major Laparo-
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tomy, and Minor Laparotomy, encompassing 95 distinct
classes. We evaluate our system in real-time and on image-
based datasets, demonstrating state-of-the-art (SoTA) per-
formance. A user study conducted after deployment in
a hospital CSSD reveals that the system significantly im-
proves workflow efficiency, streamlining CSSD operations.

1. Introduction

In hospitals, the CSSD plays a crucial role in managing sur-
gical instruments, which are transported in organized trays
between operating rooms and the CSSD for sterilization,
sorting, and reassembly. A critical responsibility of CSSD
technicians is to accurately assemble these trays according
to predefined “count” sheets. This is a significantly chal-
lenging task, particularly for new staff, and becomes even



more complex when dealing with specialty trays containing
uncommon instruments used in procedures such as rib plat-
ing, spinal surgery, or ophthalmology. This labor-intensive
process requires highly skilled technicians. However, this
field struggles with severe staffing shortages. At Hospital
X’s CSSD, nearly 25% of the positions remain unfilled,
and similar situations are reported in other urban hospi-
tals. These staffing shortages have resulted in serious conse-
quences: improperly sterilized instruments, insufficient tray
availability, and delays in surgeries and patient care [21].

Manual instrument handling and identification pose sig-
nificant challenges, largely due to the vast volume of items
in the CSSD and their fine-grained to ultra-fine-grained
differences (Figure 1). A study at Hospital X found that
roughly 80% of trays contain assembly errors that raise
patient safety concerns when essential items are miss-
ing [13, 29]. A CSSD processes over 100,000 trays and 2.6
million instruments annually [40], with each tray containing
an average of 38 instrument categories [28]. To manage this
volume of trays, CSSDs need an automated system to en-
hance accuracy and efficiency in instrument classification.

While coarse-level categorization of surgical instruments
is straightforward, the real challenge lies in distinguish-
ing between visually similar instruments that serve differ-
ent functions. Examples include various types of clamps,
scissors, or forceps that differ slightly in design (Figure 1).
Recent advancements in computer vision and deep learning,
particularly Convolutional Neural Networks (CNNs) [30],
have shown significant promise in addressing these chal-
lenges. CNNs excel at image recognition tasks, including
fine-grained classification of objects with subtle visual dif-
ferences, making them well-suited for applications in med-
ical imaging and surgical instrument identification [14, 15,
45, 46]. However, applying CNNss to the ultra-fine-grained
surgical instrument classification in a real-time, multi-view
setting remains under-explored.

Given these technological advancements, a real-time
ultra-fine-grained image classification system can transform
healthcare delivery by improving the tray sorting process
in hospitals’ CSSDs. Such a system would assist tech-
nicians in accurate instrument identification, reducing er-
rors and enhancing efficiency. This improved accuracy en-
sures surgeons have precise tools for life-saving surgeries
in critical situations. Additionally, it would help new hires
quickly learn to recognize ultra-fine-grained, uncommon in-
struments and assemble trays, reducing supervised training
overhead. Beyond patient care, this system could signif-
icantly lower assembly costs by enabling efficient instru-
ment identification and organization. This could also facili-
tate future advances toward fully robotic tray assembly.

In this paper, we propose a system that uses CNN and
transformer-based architectures on multi-view images to
automatically recognize and classify ultra-fine-grained sur-
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gical instruments in real-time. Our system employs a sim-
ple yet effective addition-based feature fusion technique
that combines complementary features from multiple views
to enhance classification accuracy. Specifically, we use
late addition feature fusion, where feature vectors extracted
from the side and top views of surgical instruments are
added and passed through an additional fully connected
layer. This fusion strategy leverages complementary infor-
mation from different views before passing the combined
features to the classification layer, improving the model’s
discriminative power. Our system’s hardware consists of a
two-camera image acquisition platform for continuous cap-
ture, enabling real-time predictions. We also develop a user
interface (UI) that allows users to interact with the system
by viewing model predictions, retrieving the top three pre-
dictions with their confidence scores, counting instruments
assembled in trays, and accessing high-resolution images of
predicted instruments for verification or training purposes.

For our system, we focus on three surgical trays (Eye
Vitrectomy, Major Laparotomy, and Minor Laparotomy)
containing fine-grained to ultra-fine-grained surgical instru-
ments (Figure 1). These trays comprise 113 categories, of
which 95 are unique and 18 are shared between the Major
and Minor trays. We train individual models for each tray
and develop a comprehensive model capable of classifying
all 95 unique instrument categories. Our dataset includes
50 image pairs per category, captured with variations in ori-
entation, position, and lighting conditions. These surgical
instruments follow standardized designs consistent across
healthcare facilities worldwide, making our system applica-
ble to CSSDs in various hospitals. When deployed in Hos-
pital X’s CSSD, our system demonstrates exceptional per-
formance with accuracy rates consistently exceeding 99.5%
in real-time. A user study shows significant improvements
in workflow efficiency, indicating its potential to transform
CSSD operations and enhance surgical procedure safety.

In this paper, we have the following contributions:

We propose a real-time ultra-fine-grained surgical instru-
ment classification system with an addition-based feature
fusion technique that combines complementary features
from multiple views, achieving competitive or better per-
formance than SoTA methods.

Our system introduces a cost-effective, easy-to-clean
open-environment image acquisition platform and a user-
friendly interface for CSSD technicians.

To the best of our knowledge, this is the first real-time
ultra-fine-grained multi-view surgical instrument classifi-
cation system that achieves exceptional accuracy exceed-
ing 99.5% in real-time, real-world CSSD testing.

We have released a dataset of 10 paired images per instru-
ment class (totaling 950 pairs) to support future research’.

IDatasets: htt ps://githubhtbprolcom s.evpn.librar .nenu.edu.cn/


https://github.com/Atabuzzaman/UFG_SIC
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Figure 2. Overview of our proposed real-time ultra-fine-grained surgical instrument classification system. The system consists of two main
components: (1) an image collection platform that continuously captures images using dual cameras, and (2) a classification framework that
predicts instrument types using multi-view images. The process begins when a CSSD technician places an unknown surgical instrument
on the platform, then the system automatically captures images from two different angles. Using the images, the trained model predicts the
instrument class. Based on the prediction, the CSSD technician assembles the tray for further sterilization and storage.

2. Related Work

Surgical Instruments Classification

The classification of surgical instruments is crucial due to
their role in successful procedures and the increasing com-
plexity of fine-grained tools used in modern surgeries. Re-
cent works have addressed this challenge using machine
learning and computer vision techniques [25, 31, 33].
Research on surgical instrument classification has
largely focused on laparoscopic procedures for semantic
segmentation of video footage [1, 37, 48]. [31] employed
a Support Vector Machine with Bag-of-Words features ex-
tracted from densely sampled key points in training images.
Their study compared the efficacy of three keypoint descrip-
tors: ORB [34], SIFT [27], and SURF [2]. [4] proposed an
image-based surgical tool classification method using de-
tected bounding boxes and a cascade of random forest algo-
rithms based on multiple features, including histograms of
hue and saturation, gradients, and SURF features [2].
Recent work has incorporated deep learning ap-
proaches. [1] introduced a novel neural network framework
that incorporates a classification module to enhance the ac-
curacy of instrument mask identification. [24] developed a
full-resolution CNN for efficient organ and surgical instru-
ment classification using laparoscopic image datasets.
Several studies have explored various aspects of instru-
ment recognition. [26] developed a camera-based surgi-
cal instrument classification system using CNN architec-
ture, employing three cameras to capture different views
while processing one image at a time. [17] addressed
the challenge of unbalanced data in the publicly avail-
able Cholec80 [43] laparoscopy video dataset for classifi-
cation by implementing multiple data augmentation tech-
niques and a fine-tuned CNN. [22] applied a region-based
convolutional neural network (R-CNN) to recognize surgi-
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cal instruments using a custom dataset generated from la-
paroscopic gynecological videos. [18] combined a faster
R-CNN with VGG16 to detect laparoscopic surgical tools
and perform operative skill assessment using the M2CAI
dataset [19]. [7] explored a self-supervised method for seg-
menting surgical instruments in laparoscopic surgery, utiliz-
ing the robot’s kinematic model as a source of information.
While most prior work has focused on instrument segmen-
tation in surgical videos or single-view classification, we
propose a real-time ultra-fine-grained surgical instrument
classification system using multi-view images, CNN, and
transformer-based architectures.

Multi-view Fusion Techniques

Multi-view fusion strategies in deep learning architectures
can be categorized based on the stage of feature integra-
tion in the network pipeline. Early fusion combines con-
volutional feature maps from different views before deeper
processing, enabling joint representation learning but po-
tentially losing view-specific discriminative features [12].
Late fusion, which processes features independently before
integration, has gained popularity due to its effectiveness
in preserving view-specific information. Various late fu-
sion methods have been proposed, including concatenation-
based approaches [5, 44], pooling operations [1 1, 41], atten-
tion mechanisms [8, 35], and transformer-based fusion [23],
though the latter can introduce significant computational
overhead. Score fusion, representing the most downstream
integration approach, combines predictions at the classifier
output level through methods like softmax score averag-
ing [38] and temporal window fusion [20], but may miss
important feature interactions that occur at earlier stages.
Our method employs efficient element-wise addition of
features from dedicated fully connected layers. Unlike
transformer-based feature addition fusion [23] that requires



Figure 3. Initial single-view images of surgical instruments from
the major laparotomy tray.

additional encoding steps, or concatenation approaches [5]
that increase dimensionality, our approach maintains com-
putational efficiency while preserving discriminative spa-
tial information. This makes it particularly suited for fine-
grained surgical instrument classification, where both effi-
ciency and detailed feature preservation are essential.

3. Method

Our proposed real-time ultra-fine-grained surgical instru-
ment classification system mainly consists of two compo-
nents: (i) an image collection platform to continuously col-
lect multi-view images, and (ii) a multi-view image classi-
fication framework for real-time predictions. Figure 2 illus-
trates our proposed system”.

3.1. Image Collection Platform

We initially collect 35 single-view images per instrument
class using a basic imaging platform. Figure 3 shows sam-
ple images from the major laparotomy tray, which contains
larger instruments compared to the eye vitrectomy tray. De-
spite using SoTA models like EfficientNet [42] and Vision
Transformer (ViT) [9], we achieve only 82% and 74% ac-
curacy, respectively. These suboptimal results motivate us
to develop a cost-effective, user-friendly image collection
platform equipped with dual UVC cameras to capture mul-
tiple views of each instrument. Figure 4 depicts our de-
signed platform, fabricated from solid aluminum extrusion
through iterative CAD design and rapid prototyping. Our
18" x 6" platform features a top overhead camera posi-
tioned 14" above the center via joined arms and a side cam-
era at the base corner oriented at a 45° angle with a slight
downward tilt. We engrave a rectangular box to indicate
the side-view camera focus area. The blue handler helps
to consistently place the instrument’s tips in the focus area.
The platform accommodates one instrument at a time, with
camera positions allowing clear visualization of instruments
from both small Eye Vitrectomy tray and larger Major and
Minor laparotomy trays (Figure 1). For image classifica-
tion, instruments are laid flat on the platform base. A Luxo-
nis OAK-D camera with fixed focus and 4K resolution cap-

2We design a UI that could be found in the supplementary material.
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Figure 4. Our proposed image collection platform for real-time
ultra-fine-grained surgical instruments classification.

tures an overhead view of the entire instrument. An oblique
side-angle profile of the instrument is captured using a 4K
USB camera with a fixed short focal length to acquire ultra-
fine-grained details of the instrument tips (e.g., curvature,
surface texture, and tooth pattern).

3.2. Multi-view Image Classification Framework

Our proposed ultra-fine-grained surgical instrument classifi-
cation system uses multi-view CNN architectures (Figure 2)
inspired by [3, 10, 36, 41, 44], along with a multi-view
ViT architecture [6, 47]. Let I, and I; be a multi-view
image pair of our dataset D ={(I;, I1;), ¢; }I\., of size N,
comprising side-view (/,), top-view (I;) images, and cate-
gory label c¢. We extract the features (fs and f;) of I and
I; separately using identical architectures (Mcy,p/vit), in-
cluding EfficientNet [42], ResNet50 [14], VGG16 [39], and
ViT [9] (Eq. | & 2). Each model processes the input im-
age pair independently, extracting features (fs and f;) using
the CNN or ViT architecture. These features pass through
respective fully connected (L p¢) layers within each model
branch (Eq. 3 & 4). To fuse the feature vectors ( fs, and fy,)
from both views, we employ late feature fusion techniques,
specifically concatenation as motivated by [3, 5, 44]. Be-
sides this feature concatenation fusion, we employ a fea-
ture addition fusion technique (Eq. 5) for our proposed sys-
tem inspired by [23]. In concatenation fusion, feature vec-
tors are concatenated end-to-end into a single larger vec-
tor. This concatenated vector is then passed through a fully
connected layer (L fysion)- In addition fusion, feature vec-
tors are first summed element-wise into a same-size vector
before passing through the Lf,4;0n layer. This late-stage
feature fusion leverages complementary information from
different views, enhancing the discriminative power of the



combined feature representation [3, 32, 36, 41]. The fused
feature vector f, feeds into a classification layer L¢ors,
which produces logits P;,4i.s (Eq. 6). These logits are con-
verted into class probabilities P.;,ss using the softmax acti-
vation, enabling the prediction of the instrument class (Eq.
7). Mathematically, we can express these as follows:

Js = Menonie(1s) (D

Jt = Meanpic(1y) )
Jsv = Lrc(fs) 3)
fto = Lrc(f) 4)
fo = Ltusion(fsv + fto) &)
Piogits = Lers(fv) (6)
Prjass = softmax ( Pogits ) @)

The cross-entropy loss Lo between the predicted class
probabilities P,;,ss and the true label y is defined as:
c
Lcg =~ Z Ye IOg(Pclass,c)

c=1

®)

where C' is the total number of classes, and ¥, is the binary
indicator (0 or 1) for class c¢. The predicted class for the
instrument pair can then be obtained by selecting the class
¢ with the highest probability:

¢ = argmax Pgss,c 9
We deploy the trained models for real-time prediction in
the CSSD of Hospital X.

4. Experiments and Evaluations

We evaluate our proposed ultra-fine-grained surgical instru-
ment classification system on three surgical instrument trays
containing instruments ranging from small to large with
varying degrees of granularity (Figure 1).

4.1. Datasets Collection

We collect the dataset by systematically acquiring images
using our image acquisition platform and three surgical
trays: Eye Vitrectomy, Major Laparotomy, and Minor La-
parotomy. The Eye Vitrectomy tray contains small, ultra-
fine-grained surgical instruments (Figure 1, 1st row), while
the Major and Minor trays contain relatively larger, fine-
grained to ultra-fine-grained surgical instruments (Figure 1,
2nd row). Table | presents the dataset statistics and train-
test distribution used in our experiments °.

To ensure system robustness across varying lighting con-
ditions and address the challenges of controlling environ-
mental lighting, we conduct image acquisition in an open
environment. For each of the 95 unique surgical instru-
ment categories, we collect 50 image pairs, totaling 4,749

3Surgical instruments’ names are in the supplementary material.
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Tray Type | # Categories | # Instruments | Training | Testing | Total
Eye 41 58 1536 513 2049
Major 34 91 1275 425 1700
Minor 38 89 1425 475 1900

# Total 113 238 - - 5649
# Unique 95 238 3561 1188 4749

Table 1. Dataset statistics for the Eye, Major, and Minor Laparo-
tomy Trays. Each instrument category contains 50 image pairs,
with one exception in the Eye tray. The “# Instruments” column
indicates the total count of distinct instruments per tray across all
categories, including manufacturer variations. The “Training”” and
“Testing” columns show the distribution of image pairs for model
development and evaluation. While the total “# Categories” is 113,
the Major and Minor Laparotomy trays share 18 common cate-
gories, resulting an overall of 95 unique categories.

pairs (one category in the Eye Vitrectomy tray has 49 pairs).
When multiple instances of the same instrument category
are present in a tray, we include all within their respective 50
image-pair set. Our platform’s dedicated focus area ensures
consistent and optimal instrument positioning, while we in-
troduce controlled variations by slightly adjusting instru-
ment placement across images. We further enhance dataset
diversity by capturing images under different lighting con-
ditions, including shadows induced by a large board and ad-
ditional illumination from a flashlight. This systematic ap-
proach to data collection, combining controlled positioning
with environmental variations, enables robust model train-
ing while maintaining high recognition accuracy for ultra-
fine-grained surgical instruments.

4.2. Experimental Setups

To validate our ultra-fine-grained surgical instrument clas-
sification system, we conduct experiments using side-view,
top-view, and multi-view settings at different image reso-
lutions. For single-view settings (side-view and top-view),
we use single-view models (e.g., traditional EfficientNet,
ResNet50, etc.). For multi-view settings, we apply these
models with feature fusion from separate views. For sim-
plicity, we retain the single-view model names (e.g., Effi-
cientNet, ResNet50, etc.) to refer to our different multi-
view instrument classification architectures.

We utilize pre-trained weights from the torchvision li-
brary* for three CNN-based architectures (EfficientNet,
ResNet50, VGG16) and from the timm library’ for the
transformer-based ViT-B/16. We train all models using
SGD optimizer with a learning rate of 0.001 and Cross En-
tropy Loss. With 50 image pairs per class, models reach op-
timal performance within 15 epochs of the total 20 epochs.
For reduced datasets (10 or 20 pairs per class), while Effi-
cientNet and ViT-B/16 converge quickly, ResNet50 requires
60 epochs. We train the models on an NVIDIA A40 GPU,

“https://pytorch.org/vision/stable/models.html
Shttps:/pypi.org/project/timm/



Tray Type | Model Side View | Top View | Add Fusion | Cat Fusion
EfficientNet [42] 93.18 91.81 94.93 91.62
E ResNet50 [14] 94.93 94.35 96.10 90.45
ye
VGG16 [39] 90.06 94.54 88.69 93.57
ViT-B/16 [9] 95.52 93.96 96.10 92.98
EfficientNet [42] 83.58 90.45 94.11 96.21
: ResNet50 [14] 92.21 97.26 99.79 98.95
Minor
VGG16 [39] 88.42 96.42 96.42 95.79
ViT-B/16 [9] 89.26 95.58 98.32 98.32
EfficientNet [42] 92.00 94.82 97.41 97.88
. ResNet50 [14] 93.41 99.29 99.76 99.53
Major
VGG16 [39] 95.06 97.88 98.82 97.88
ViT-B/16 [9] 97.18 97.65 99.53 99.53

Table 2. Performance comparison across surgical instrument trays.
The evaluation includes side-view only, top-view only, and multi-
view settings, with multi-view using either addition-based (Add)
or concatenation-based (Cat) feature fusion. All experiments use
224%224 image resolution. Bold values indicate the best perfor-
mance within each setting for each tray, while highlighted cells
show the best performance across settings, demonstrating the ef-
fectiveness of our employed Add-feature fusion technique.

and at inference, they require approximately 5 GB of GPU
memory for a 1000x1000 image pair. Since our dataset is
balanced across all classes, we use accuracy as our primary
evaluation metric to assess model performance.

4.3. Results and Discussion

We evaluate the models using three configurations: side-
view images only, top-view images only, and multi-view
(combined views). For multi-view evaluation, we employ
two feature fusion techniques: late concatenation (Cat) and
our introduced late addition (Add).

4.3.1. Models’ Performance across Different Settings

Table 2 presents the performance of our used four models
across three surgical tray images at 224x224 resolution.

Eye Vitrectomy Tray. ResNet50 and ViT-B/16 achieve
the highest accuracy of 96.10% with Add fusion. While
VGG16 excels in top-view (94.54%), it shows lower perfor-
mance in side-view (90.06%) and Add fusion (88.69%). Ef-
ficientNet demonstrates consistent performance across set-
tings, peaking at 94.93% with Add fusion. Notably, Cat
fusion shows lower performance compared to Add fusion,
with ResNet50’s accuracy decreasing by 5.65% to 90.45%.

Minor and Major Laparotomy Trays. ResNet50
maintains superior performance, achieving the highest ac-
curacies with Add fusion in both Minor (99.79%) and Ma-
jor (99.76%) Laparotomy trays. ViT-B/16 closely follows
in the Major tray, reaching 99.53% in both fusion set-
tings. While EfficientNet shows lower side-view accuracies
(83.58% and 92.00%), it improves significantly with Add
fusion (94.11% and 97.88%).

Overall Findings. The results demonstrate ResNet50’s
superior performance across all trays and fusion techniques,
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Tray Type | Model Image resolution
224x224 384x384 512x512
EfficientNet 94.93 97.08 99.81
ResNet50 96.10 98.05 95.13
Eye VGG16 88.69 96.10 92.79
ViT-B/16 96.10 96.10 97.08
MV-HFMD [3] 96.88 98.64 98.05
EfficientNet 94.11 98.32 99.58
ResNet50 99.79 99.16 98.74
Minor VGG16 96.42 97.05 96.84
ViT-B/16 98.32 99.16 99.58
MV-HFMD [3] 96.84 99.37 98.95
EfficientNet 97.41 99.53 99.76
ResNet50 99.76 99.76 99.76
Major VGG16 98.82 99.53 99.29
ViT-B/16 99.53 100.00 99.76
MV-HFMD [3] 99.53 100.00 100.00
EfficientNet 94.95 96.89 98.82
ResNet50 95.37 97.05 97.22
All-trays VGG16 92.46 92.26 93.52
ViT-B/16 96.89 99.24 99.16
MV-HFMD [3] 97.81 99.24 97.64

Table 3. Accuracy comparison of different models with varying
image sizes on Eye, Minor, Major trays, and all trays together. All
models employed the late addition feature fusion technique, utiliz-
ing both side-view and top-view (multi-view) images. The results
show performance improvements as the image size increased from
224x224 to 384x384. However, at 512x512, EfficientNet con-
stantly achieves better accuracy than at the 384x384 image size.
The best results are marked in bold.

particularly with Add fusion at 224x224 resolution. ViT-
B/16 shows promising performance, while EfficientNet and
VGG16, though competent, generally lag behind. As shown
in the highlighted cells of Table 2, our employed Add fusion
consistently outperforms Cat fusion [5, 41] across all trays,
establishing its effectiveness for feature fusion.

4.3.2. Model Performance across Image Resolutions

While the models perform efficiently in image-based test-
ing, they struggle to correctly classify ultra-fine-grained
instruments in real-time open-environment settings with
224x224 image resolution due to insufficient instrument de-
tail. To address this limitation, we conduct experiments
using higher image resolutions of 384x384 and 512x512.
Table 3 presents the performance comparison of four mod-
els across different image resolutions using late addition
feature fusion for the trays. Higher resolutions generally
improve model performance due to better instrument detail
capture, crucial for ultra-fine-grained classification.
EfficientNet demonstrates consistent improvement with



# Image-pair/class
Tray Type | Model 10 20 35 50
EfficientNet | 81.55 96.10 95.82 97.08
Eye ResNet50 72.82  92.68 93.87 98.05
ViT-B/16 72.82  95.12 95.12 96.10
EfficientNet | 85.26 9421 9820 98.32
Minor ResNet50 77.89 88.42 9850 99.16
ViT-B/16 8421 96.32 99.70 99.16
EfficientNet | 78.82 94.12 9698  99.53
Major ResNet50 7529 97.06 97.65 99.76
ViT-B/16 85.88 98.24 99.66 100.00

Table 4. Results demonstrate the effect of varying the number
of image pairs per category on models’ performance. For these
experiments, we used an image resolution of 384x384, as most
models demonstrated optimal performance at this resolution.

increased resolution, achieving peak accuracies of 99.81%
and 99.58% at 512x512 for Eye and Minor trays, respec-
tively. ResNet50 and ViT-B/16 show optimal performance
at 384x384, with slight degradation at 512x512. VGG16
performs best at 384x384 before declining at higher resolu-
tions, indicating sensitivity to larger image sizes. For all 95
unique categories (All-trays), ViT-B/16 achieves the high-
est accuracy of 99.24% at 384x384 resolution, closely fol-
lowed by EfficientNet reaching 98.82% at 512x512. Com-
pared to the current SOoTA MV-HFMD [3], which utilizes
hybrid fusion techniques (concatenation and score fusions),
our system demonstrates superior performance with high-
resolution images across most settings. The only exception
is in Major laparotomy classification, where MV-HFMD
achieves 100.00% accuracy at 512x512 resolution com-
pared to our system’s 99.76%.

Therefore, we train EfficientNet with a higher image
resolution of 10001000 and with our employed addition
fusion technique. We perform real-time testing of our
system with the trained EfficientNet and find that with
higher-resolution (1000x1000) images, EfficientNet accu-
rately classifies all the ultra-fine-grained surgical instru-
ments in the open-environment with an inference rate of 7
image pairs/second. Based on these results, we deploy our
system for real-time ultra-fine-grained surgical instrument
classification using EfficientNet with late addition fusion.

4.3.3. Impact of Training Data Volume

While our system uses 50 image pairs per class, capturing
this volume of data is labor-intensive and challenging, given
the thousands of instruments in a hospital setting. To evalu-
ate model performance with varying data volumes, we con-
duct experiments using different numbers of image pairs per
class. Table 4 presents these results, showing a clear corre-
lation between accuracy and training data volume.

With only 10 image pairs per class, all models demon-
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strate lower performance across the surgical trays: Effi-
cientNet achieves 81.55%, 85.26%, and 78.82% accuracy
for Eye, Minor, and Major trays, respectively. Increasing
to 50 pairs per class significantly improves performance,
with ViT-B/16 achieving 100% accuracy for the Major tray.
While these high accuracies might suggest the task is
straightforward, it’s important to note that they are at-
tributed to our controlled image acquisition protocol
(Section 3.1). Our image collection platform constrains
instruments to specific focus areas, significantly reducing
variations in position and angle that typically challenge
fine-grained classification tasks. This standardized capture
process, while enabling reliable instrument identification,
also means our models may require adaptation for more
variable real-world scenarios where instruments might ap-
pear in diverse orientations and environments. These results
highlight both the critical role of training data volume in
ultra-fine-grained surgical instrument classification and the
models’ limited generalization capability with reduced data.

5. Error Analysis

We present the misclassified cases in Figure 5 to analyze
where the models misclassified instruments. The first and
second rows show results when considering all 95 cate-
gories for ultra-fine-grained classification, while the last
row shows results when considering the major and minor
trays separately. Figure 5 highlights that the models en-
countered the most difficulty in classifying small instru-
ments from the Eye Vitrectomy tray in ultra-fine-grained
classification. Some misclassifications occurred when one
view of the instrument was not visible to the model, while
others were due to similar image pairs in the training set for
the predicted classes—a challenge inherent to the ultra-fine-
grained nature of the dataset. Notably, all models correctly
classified instruments at a coarse or fine-grained level but
misclassified them at the ultra-fine-grained level.

5.1. User Study

We evaluated our system’s integration into CSSD techni-
cians’ workflow through a study with six participants from
Hospital X, having experience ranging from 6 months to
10 years. After a brief introduction, participants assem-
bled a mock tray containing Eye Vitrectomy and Laparo-
tomy instruments while incorporating our system as they
deemed appropriate. They verbalized their thoughts dur-
ing the recorded assembly process. Afterward, participants
completed a System Usability Scale (SUS) [16] question-
naire and engaged in discussions with our team of human
factors and biomedical engineers. The discussions explored
potential adoption, workspace compatibility, and use cases,
focusing on whether technicians would use the system for
all instruments or only unfamiliar ones.

On the standard scale of 0 to 100, our system received



Side-view Top-view Top-view

e

Side-view Top-view Side-view

True: Speculum Barraquer Eye Adult 15mm Blade True: Forcep Castroviejo Suturing .12mm True: Forcep Castroviejo Suturing .12mm
Predicted: Speculum Barraquer Eye Pediatric 9mm Blade Predicted: Forcep Castroviejo Suturing .3mm Predicted: Forcep Castroviejo Suturing .5mm

True: Speculum Barraquer Eye Pediatric 9mm Blade True: Retractor Rake 6" Prong Dull True: Right Angle Regular Tip 7.5"
Predicted: Speculum Barraquer Eye Adult 15mm Blade Predicted: Retractor Rake 4" Prong Dull Predicted: Clamp Tonsil 7.5"

True: Clamp Edna 5 1/2" True: Scissors Metz Curved 9" True: Scissors Mayo Curved 7"
Predicted: Clamp Allis 6" Predicted: Scissors Metz Curved 10" Predicted: Scissors Metz Curved 5 3/4"

Figure 5. Illustration of misclassified surgical instruments when analyzing all 95 categories of instruments simultaneously (All-tray setting).
The first two rows show examples from this complete analysis, while the last row shows results when major and minor trays are analyzed
separately. The first two rows demonstrate that the models particularly struggle with distinguishing between ultra-fine-grained surgical
instruments from the eye tray.

a SUS score of 81.67 (SD = 14.29). This score verifies high-resolution image pairs, our system achieved near-
that our system is feasible and would not be disruptive to perfect accuracy (>99.5%) in real-time testing within the
technicians’ current processes. Rather, the system would CSSD of Hospital X. Our system assists CSSD technicians
likely help accelerate and improve the accuracy of their in accurately identifying and assembling surgical instru-
work. While most participants expressed willingness to use ments, reducing errors and enhancing efficiency. This en-
this device for all instruments, some indicated they would sures that surgeons have the precise tools needed for life-
primarily use it only when they were uncertain about the in- saving surgeries. Beyond improving healthcare delivery,
strument’s identity. We anticipate that implementing a more our system can significantly reduce tray assembly costs
professional user interface will encourage broader adoption through quicker instrument identification. Our system also
across all surgical trays, as the system proves more efficient facilitates future advancements toward fully robotic tray as-
than manual identification and assembly. sembly and robotic surgery.
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