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Abstract

In this paper, we describe a parts-based approach tai-
lored for fine-grained, few-shot classification, particularly
for scenes where the parts distribution is more significant
than the broader visual characteristics. By focusing on
part-level representations within scenes, our method pro-
vides robust classification with limited examples. Our ap-
proach, Simple Matching Parts Learner (SMPL), leverages
off-the-shelf components in a straightforward manner to op-
timize few-shot classification using a meta-training phase.
We demonstrate the performance of this approach on ex-
isting few-shot benchmarks. Additionally, we repurpose an
existing fine-grained dataset with higher class diversity and
variability than the standard benchmarks for the few-shot
setting. SMPL not only achieves state-of-the-art few-shot
classification performance, but at a much lower computa-
tional cost than compared to the other methods. Code at
https://github.com/vidarlab/smpl-fsl.

1. Introduction
Parts-based analysis is well suited for fine-grained classifi-
cation, where subtle distinctions between categories often
hinge on small, discriminative parts rather than on broader
scene-level features, which may vary widely even within
the same category. Figure 1 presents four images from the
same hotel. Although the images differ significantly in their
overall appearance, they share common objects distributed
across multiple images. The aggregate object similarity is a
stronger cue than the scene similarity between images. This
observation is particularly relevant in the fine-grained, few-
shot setting, where large-scale visual differences between
images of the same category, coupled with limited exam-
ples for training, make global scene-based features less re-
liable. Instead, parts-based features isolate components of
the scene that remain consistent across varied contexts.

Part-based approaches have differed in the semantic level
of the constituent features (i.e., patch, part, object) but
generally enforce some constraint regarding the distribu-
tion of part features in each class. While some methods

Figure 1. Four images from the same hotel vary widely in scene
appearance yet share consistent parts (color-coded). SMPL learns
to match these parts for fine-grained, few-shot classification where
broader scene features are unreliable.

learn localized features without explicit part-level guidance
(e.g., [44, 45]), most methods rely on part annotations for
supervision (e.g., [15, 38, 51, 53]). However, despite the
large amount of work in this area, part-based approaches
have not been widely adapted for few-shot learning, where
data is sparse, and the challenge lies in achieving reliable
classification with minimal labeled examples.

Our method, the Simple Matching Parts Learner
(SMPL), builds on the parts-based paradigm in a straight-
forward manner. SMPL employs off-the-shelf components
for part encoding and matching. Through a meta-training
phase, SMPL learns to recognize distinctive parts across
categories, equipping it with the capability to generalize to
novel classes with just a few labeled examples. The simplic-
ity is key; by leveraging established feature extractors and a
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streamlined matching process, our approach achieves com-
petitive few-shot classification performance with a much
lower computational overhead than more elaborate models.
We demonstrate the benefits of this approach on existing
benchmarks and a hotel room recognition dataset, which
provides a more rigorous testing ground for few-shot meth-
ods, particularly in settings with subtle intra-class differ-
ences and diverse class representations. The contributions
of this paper are as follows.

• We present a simple and efficient method for part-
based, few-shot classification.

• Our method achieves state-of-art performance on mul-
tiple few-shot benchmarks with lower computational
cost than competing approaches.

• We repurpose an existing hotel recognition dataset as
a challenging few-shot benchmark, leveraging its large
number of classes and high intra-class variability to
better evaluate fine-grained few-shot classification per-
formance compared to common benchmarks.

2. Related Work
The literature on few-shot learning (FSL) is vast; see [30]
for a survey. Within the inductive, meta-learning paradigm,
there are three dominant approaches. Optimization-based
methods learn a novel set of weights for each task (e.g., [2,
10, 16, 17, 21, 22, 31, 32, 36, 50, 55]). Metric-based
methods rely on a learned distance or matching function
(e.g., [4, 6, 7, 13, 40, 41, 48, 52]). The third category,
model-based methods, are trained to directly classify novel
tasks, which is the paradigm that SMPL follows. In this
section, we cover the related model-based FSL methods in
addition to matching and benchmarking in FSL.

Model-Based FSL Model-based methods bypass gradi-
ent updates and a global feature space, prioritizing rapid
adaptation. Some store support representations in external
memory [3, 37], while others train networks to predict meta-
learner parameters [25–27, 34]. MetaNAS [9] uses neural
architecture search to optimize both weights and architec-
ture, and SNAIL [24] structures the few-shot input as a se-
quence, using an RNN for classification. Similarly, SMPL
employs a meta-learning phase to learn part-based matching
for few-shot tasks.

FSL Matching Techniques Previous FSL methods have
employed explicit matching techniques. Early approaches
extract a global feature from each image and rely on nearest-
neighbor search, sometimes pooling support image embed-
dings from the same class [7, 40, 48]. For fine-grained
tasks, more recent methods sacrifice the computational effi-
ciency of global features to compute matching scores from
local features. RelationNet [41] applies convolutions across

concatenated feature maps from the query and each sup-
port class to compute a relation score, while LRPABN [14]
learns an alignment network applied to bilinearly pooled
features. Local features have been matched in various ways,
including as sums of distances across corresponding local
features [4], Earth Mover’s Distance to compare local fea-
ture distributions [52], and feature matching via embedded
cross-attention modules [13]. These methods, however, do
not distinguish between the images within a support class
prior to matching. In contrast, methods such as MATA [6]
RenNet, [19], and CPEA [11] perform local feature match-
ing without intra-class pooling.

FSL Benchmarks Few-shot classification methods have
been evaluated on general image recognition benchmarks
repurposed for the few-shot paradigm, like CIFAR-FS [2],
miniImageNet [48], and tieredImageNet [43]. Often, the
breadth of the task is kept relatively narrow, with 5-way be-
ing the most common. However, these datasets often fail to
capture the complexity and specificity of real-world appli-
cations. As such, fine-grained datasets such as CUB [49]
(birds), Stanford-Cars [20], and VGG Flower [28] have
become more common. Still, these fine-grained alterna-
tives do not typically have a noticeable difference in global
similarity between the query and support sets. We re-
purpose a large scale hotel room image dataset, Hotels-
8k [18], for few-shot learning by curating the dataset such
that query and support sets consist of images taken from dif-
ferent guests at different times in different rooms, introduc-
ing variations in room type, lighting conditions, and object
composition. This results in a more natural and complex
domain shift compared to previous benchmarks.

Summary Recent FSL methods have increasingly fa-
vored metric-based and optimization-based paradigms over
model-based approaches. While SMPL incorporates ele-
ments of metric-based methods, it revisits the model-based
strategy by leveraging recent advances in network archi-
tectures and semantic segmentation. Additionally, SMPL
introduces novel strategies for learning part-to-part corre-
spondences, demonstrating their effectiveness across a wide
range of benchmarks, including a new object-centric dataset
that presents fresh challenges in the few-shot setting.

3. Method
Simple Matching Parts Learner (SMPL), outlined in Fig-
ure 2, is our parts-based, few-shot classification method. In
this section, first, we establish the foundation for the few-
shot learning (FSL) setting and introduce the notation used
in the paper. Next, we describe the two main aspects of
SMPL: part encoding and part matching, and conclude with
the algorithm for training and deployment.
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Figure 2. Illustration of SMPL for a 3-way, 2-shot task. Parts are extracted from images from the support and query sets. Part (P), image (I),
and class (C) tokens are passed to a Transformer and the output class (C) tokens are compared for classification. In training, the parameters
of the part matcher are optimized, and frozen during testing. Part and image encoder parameters are frozen for both training and testing.

3.1. Background
For FSL, we have a base dataset of images, Xbase, with
known labels, Ybase, for meta-learning. For evaluation, there
is a set of images and labels, Xnovel and Ynovel, respectively,
that are disjoint from their base counterparts. These sets
can be subsampled to generate a few-shot task consisting
of a support set S = {(xi, yi)} with NK images from N
classes with K images each and query set, Q = {(xi, yi)},
with separate images drawn from the same label space as
S. For our approach, we generate few-shot episodes during
both training and testing. Our method relies on a model for
part encoding and another for part matching. Let f be the
output of the pre-trained feature encoder, f . The learnable
part matching model, Z = gθ(T ), is parameterized by θ
and outputs a token sequence, Z , given input sequence, T .

3.2. Part Encoding
For part extraction, our approach leverages recent advances
in image semantic segmentation to isolate and represent
each part within an image, as illustrated in Figure 3. Fol-
lowing the approach described in [38], each part is repre-
sented by the mean pooled feature values extracted from
a pre-trained model, providing a D-dimensional descrip-
tor for each segment. This approach ensures that the fea-
ture representation remains compact for computational ef-
ficiency, while capturing essential discriminative character-
istics. In Section 4.4.2, we investigate various approaches
for part feature extraction and representation, comparing the
performance. Additionally, to capture broader contextual
information, we compute an image-level feature, also of di-
mensionality D, to complement the part-level representa-
tions. In Section 4.4, we demonstrate that few-shot perfor-

Figure 3. SMPL uses off-the-shelf segmentation methods to ex-
tract parts from images. For each image, a feature is generated for
each part in addition to a image-level context feature.

mance is enhanced by incorporating both local (part-based)
and global (image-level) perspectives.

3.3. Part Matching
The core of SMPL is the meta-learning phase which learns
to match parts. The input is a sequence of tokens, T =
{tji}, for each image i and part j. We designate the query
as i = 0 and the support images as i = {1, 2, · · · , NK}
for an N -way, K-shot task. For a given image, the features
include the local features and global context feature. Given
a feature representation, f ji , the corresponding token is:

tji = E⊤f ji +Ci (1)

where Ci is a fixed sinusoidal embedding [47] that can take
on one of N + 1 distinct values, distinguishing whether a
token originates from the query or from one of the support
classes. E is an optional learnable linear projection matrix,
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Figure 4. Part matching Transformer architecture diagram.

which can be used if the dimensionality of the feature from
the pre-trained model differs from the input dimensionality
of the part matching model, gθ(). For the query and each of
the N support classes, we include a learnable class token to
serve as the aggregate representation for matching.

Figure 4 shows the part matching Transformer of SMPL,
which uses selective attention to match the set of part fea-
tures extracted from the query set with the set of features
extracted from the support set. The network consists of
L encoder blocks, each containing a multi-head attention
module with H heads followed by a 2-layer MLP with a
ReLU activation. The attention modules use class-selective
attention via masking, such that each class token attends ex-
clusively to its respective part and context tokens. We fol-
low the common approach to masked attention [8], where
masked entries of the query-key matrix are set to a value
representing negative infinity, effectively preventing atten-
tion between certain tokens. The part and context tokens
across the query and support sets are fully connected.

From the output token sequence, Z = gθ(T ), the class
tokens are used to match. We denote the output class tokens
as z0 for the query and z1...zN for the support classes. The
query class token is compared to each of the support class
tokens with cosine similarity and normalized using softmax.
Following previous work [7], we incorporate a tunable tem-
perature parameter τ to scale the similarity scores, which

leaves the following query-support matching score:

ŷi =
exp (τ⟨z0, zi⟩)∑N
i=1 exp (τ⟨z0, zi⟩)

(2)

where ⟨·, ·⟩ denotes cosine similarity. The part matching
network can be optimized with cross-entropy loss.

3.4. SMPL Algorithm
Algorithm 1 outlines the meta-training process for SMPL,
which uses multi-task training, such that the number of
shots, K and number of ways, N , for each training task are
randomly sampled between [Kmin,Kmax] and [Nmin, Nmax],
respectively. The ensures that a single model can be de-
ployed to handle tasks of varying and unknown sizes.

Algorithm 1 SMPL

1: while not converged do
2: ▷ Sample N-way, K-shot task ◁
3: K ← RANDINT(Kmin, Kmax)
4: N ← RANDINT(Nmin, Nmax)
5: Q,S ∼ (Xbase,Ybase)
6: F ← COMPUTE-FEATURES(Q,S)
7: for all f ∈ F do
8: ▷ Generate part matching input tokens ◁
9: t← TOKENIZE(f ) ▷ Eq. 1

10: T ← T ∪ t
11: T ← ADD-CLASS-TOKENS(T , N + 1)
12: Z ← gθ(T ) ▷ Compute output class tokens
13: y← MATCH-SCORE(Z) ▷ Eq. 2
14: ▷ Compute loss and update weights ◁
15: θ ←WEIGHT-UPDATE(θ,∇L)

Testing follows the training process, with two modifica-
tions. The number of shots and ways, query image, and
support images are provided as input rather than sampled
(line 3-5). There is no optimization step (line 15); the high-
est similarity support class is returned as the best match.

4. Results
Datasets We evaluate SMPL on 5 fine-grained datasets. 4
are single-object datasets commonly used for few-shot eval-
uation: CUB [49], Stanford-Cars [20], Reptilia [46], and
VGG-Flower [28]. We follow the most common protocol
for training, validation, and testing splits and report accu-
racy on 1,000 1-shot/20-way and 5-shot/20-way tasks from
the test set with 15 queries per class. We also evaluate on
the hotel recognition dataset, Hotels-8k [18], which con-
tains over 100,000 images from nearly 8,000 hotels. We re-
purpose the dataset for the few-shot setting by ensuring that
query and support set images in the test set are submitted
by different guests and use a 70/10/20 class split. Hotels-8k
contains classes with only a small number of examples, so
each task includes 3 queries per class.
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Implementation We use Grounded-SAM [33] for part
segmentation and a DINO [5] pre-trained ViT-Base model
with 16×16 patches for feature extraction. The part match-
ing transformer consists of 4 layers and 8 attention heads,
with 768-d features. The model is trained with stochastic
gradient descent with a 1-cycle learning rate scheduler [39].
The temperature parameter is τ = 20. The training episode
ranges are [Kmin,Kmax] = [1, 5] and [Nmin, Nmax] = [5, 20].
Regularization includes random dropout of 20% of the input
features and label smoothing [42].

Baselines We compare SMPL with the following few-
shot methods: R2D2 [2], MetaOptNet [21], Linear Probing,
full fine-tuning (FT), VPT [17], SSF [22], ProtoNet [40],
RelationNet [41], MetaBaseline [7], MATA [6], and the
FORT [50] variants, FORT-FT and FORT-SSF.

4.1. Few-Shot Classification
For each dataset, we trained separate baseline models for
1-shot and 5-shot tasks, while SMPL uses a single multi-
task model for both. Table 1 shows that SMPL matches or
surpasses all baselines across the four datasets and settings,
demonstrating its robustness and adaptability. For Hotels-
8k, CUB, and Reptilia, SMPL outperformed the next clos-
est method by 13%, 8% and 14%, respectively, for 1-shot
classification. For CUB, though all the methods performed
well, the substantial improvement of SMPL over other
methods suggests that it effectively captures subtle inter-
class differences. The Reptilia dataset presented unique
challenges due to the less distinctive visual characteristics
of the reptile classes. However, SMPL still exceeded the
performance of the baselines by wide margins. Based on
the aggregate results, Hotels-8k was the most challeng-
ing dataset for few-shot classification, where methods with
competitive performance on other datasets performed sig-
nificantly worse than SMPL and the other top methods.
This dataset exhibits a much higher level of query-support
distribution shift in the form of object composition, lighting,
and viewpoint compared to the other benchmarks.

Figure 5 illustrates challenging 1-shot classification
cases where SMPL accurately classified the query. Each
row presents a query image, the correct match from the sup-
port class, and a false positive selected by multiple baseline
methods. These examples underscore the advantages of the
part-centric approach of SMPL. In the first row, the small
red pillow is a distinguishing feature, though the false pos-
itive exhibits high visual similarity in the bed, headboard,
and red wall. In the second row, there is a distinct pattern
on the seating for the correct match. In the third row, the
beak and white underbelly match, even though the incor-
rect image displays a similar-looking bird in the same pose.
In the fourth row, there are subtle details like the matching
side-view mirrors, windshield, and side decals on the cor-

Query Correct Incorrect

Figure 5. Each row shows a query, correct match, and false posi-
tive match selected by multiple baseline methods.

rect car. In each of these cases and others, SMPL success-
fully pairs the query with the correct support image, even in
the presence of highly similar distractors.

4.2. Performance Analysis

SMPL training is efficient as it does not require fine-
tuning the backbone, significantly reducing computation by
leveraging precomputed part features. As shown in Ta-
ble 2, SMPL requires only a fraction of GPU memory and
TFLOPs compared to other meta-learning approaches.

For inference, Figure 6 plots the average GPU mem-
ory consumption and inference time per episode on 20-way
tasks with the Reptilia dataset. For each method, we plot
for both the 1-shot and 5-shot measures. The optimization-
based methods, VPT (purple) and FORT-SSF (yellow), took
longer, due to the optimization steps involved for inference.
Most metric-based methods, such as RelationNet (green),
typically were faster, but required much higher memory
consumption. MATA (blue), in particular, scaled poorly,
as the memory usage increased linearly with the size of the
task. SMPL (orange) not only achieves superior classifica-
tion performance compared to the other methods but also
competitive computational efficiency across both dimen-
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Hotels-8k CUB CARS Reptilia VGG-Flower
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
R2D2 .171 .445 .608 .881 .245 .629 .433 .671 .793 .972

MetaOptNet .168 .420 .611 .887 .237 .589 .437 .693 .799 .974
Linear Probing .126 .325 .438 .814 .176 .466 .358 .639 .602 .937

FT .177 .457 .612 .907 .238 .624 .432 .684 .812 .978
VPT .158 .375 .570 .856 .229 .563 .404 .655 .774 .964
SSF .172 .452 .612 .915 .235 .638 .426 .687 .814 .977

FORT-FT .172 .434 .622 .912 .245 .639 .435 .693 .810 .978
FORT-SSF .152 .383 .653 .901 .249 .610 .432 .674 .801 .970
ProtoNet .238 .362 .658 .883 .610 .853 .322 .532 .756 .964

RelationNet .446 .580 .642 .780 .476 .773 .318 .513 .599 .787
MATA .388 .729 .696 .868 .706 .864 .384 .583 .820 .963

MetaBaseline .452 .676 .762 .889 .711 .867 .474 .667 .854 .966
SMPL .515 .737 .826 .934 .711 .876 .539 .717 .858 .978

Table 1. Few shot classification accuracy on 20-way tasks. All methods use a DINO-pretrained ViT backbone.

Method Mem (GB) TFLOPs
RelationNet 39.9 51.3

MATA 66.1 27.3
MetaBaseline 36.3 41.6

SMPL 6.62 2.78

Table 2. Training efficiency on the Reptilia dataset.
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Figure 6. Computational efficiency (time and GPU memory) for 1-
shot (circle) and 5-shot (triangle) inference on the Reptilia dataset.

sions. While the metric-based ProtoNet (red) was slightly
more efficient, SMPL outpeformed it on 1-shot and 5-shot
classification on this dataset by 67% and 35% respectively.

4.3. Part Similarity
Figure 7 shows the 5-shot classification performance on the
Hotels-8k dataset as a function of the part similarity be-
tween the query and the correct support set class. Part simi-
larity, which ranges from 0 to 1, is calculated as the overlap
coefficient between the matching part types from each set.
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Figure 7. 5-shot classification accuracy on Hotels-8k dataset as a
function of query-support part similarity.

As part similarity decreases, all methods experience a re-
duction in accuracy, but the rate of decline varies greatly.
The performance of SMPL is least affected, highlighting its
robustness in handling complex intra-class variations. Com-
paratively, the performance of MATA is quite high when
part similarity is high, but rapidly declines, reaching the
lowest accuracy among all methods for the most dissimi-
lar cases. SMPL outperformed these methods in aggregate;
this analysis indicates that the greatest benefit was obtained
for the most difficult, visually dissimilar cases.

4.4. Ablation Analysis
We conducted a comprehensive ablation analysis to inves-
tigate feature extraction, encoding, and multiple aspects of
the SMPL training process. Unless otherwise specified, the
few-shot classification values were obtained on the Hotels-
8k dataset using a DINO-pretrained ViT backbone.

4.4.1. Input Features
The ablation study, summarized in Table 3, highlights the
individual and combined contributions of key components
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Component Accuracy
# Part Feat Img Feat Class Enc 1-shot 5-shot
1 ✓ .377 .604
2 ✓ .481 .708
3 ✓ ✓ .384 .613
4 ✓ ✓ .504 .727
5 ✓ ✓ .493 .722
6 ✓ ✓ ✓ .515 .737

Table 3. Ablation study showing the impact of feature encoding
components on 1-shot and 5-shot accuracy on Hotels-8k.

Figure 8. Each row shows (L-R) an image and segmentation map
produced by SuperPixels, Swin-Tiny and GroundedSAM.

of part encoding: part features, (global) image feature, and
class encoding. For clarity, we refer to each configuration
by its row number (e.g., #3). Simply using a global im-
age feature to represent the image (#1) establishes a modest
baseline with a 1-shot accuracy of 0.377 and a 5-shot accu-
racy of 0.604. This configuration shows that even though
DINO features provide strong image-level representations,
their effectiveness is limited in the few-shot setting alone.
Alternatively, using only part features (#2), we see the
model’s performance improve significantly for both tasks,
with a 27.6% and 17.2% increase over using only the im-
age feature, respectively. This highlights the importance of
localized part information, where specific part details can
offer distinct cues. For each combination of feature types
(part-only, image-only, and both), the addition of class en-
coding yields an improvement, ranging from 1.8% to 4.7%
for 1-shot and 1.4% to 2.6% for 5-shot. Class encoding
is particularly beneficial when combined with part features.
The combination of all three components in #6 produces the
highest accuracy, indicating that the interplay of global im-
age context, part information, and class encoding enhances
the model’s robustness in the few-shot setting.

4.4.2. Part Segmentation and Encoding
To analyze the sensitivity of SMPL to the accuracy of part
segmentation or the representative power of the part fea-
tures, we evaluated multiple combinations of segmentation
methods and feature representations. We evaluated three
segmentation methods: SuperPixels [1], Swin-Tiny [23]

Supervised DINO DINOv2
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SuperPixels .464 .694 .473 .704 .576 .805
Swin-Tiny .481 .709 .482 .715 .598 .813

GroundedSAM .494 .719 .515 .737 .604 .819

Table 4. Comparison of few-shot performance on the Hotels-8k
dataset using part features generated with different segmentation
methods (rows) and feature representations (columns).

trained ADE-20k [54], and GroundedSAM. Figure 8 shows
representative examples of the segmentation maps gen-
erated by each method. For part feature representation,
we compare a (Supervised) ViT-Base pretrained on Ima-
geNet [35], as well as DINO and DINOv2 [29], which are
unsupervised methods.

Table 4 shows the few-shot performance on Hotels-8k.
We notice two, perhaps unsurprising, trends: better seg-
mentation and better features lead to better few-shot perfor-
mance for SMPL. The effect of feature representation ap-
pears to be stronger than that of the segmentation method.
DINO and supervised features were trained on the same
dataset with the same architecture; the modest increase
in performance using DINO aligns with recent work sug-
gesting that unsupervised methods generally produce more
salient local representations [38]. The DINOv2 features are
the best performers with SMPL and least affected by se-
mantic segmentation quality, particularly in the 5-shot set-
ting. The modular SMPL approach can take advantage of
advances in segmentation or feature representations.

4.4.3. Attention Schemes
Selective attention has been shown to be beneficial in terms
of computational efficiency and model performance [12].
Here, we analyze the effect of the following selective atten-
tion schemes: (1) Full: The default setting for full pairwise
attention between all token types. (2) Class-Selective: Part
and image tokens fully attend to each other, but class tokens
only attend to part and image tokens of the corresponding
class. (3) Intra-Class: Tokens only attend to tokens in the
same class. (4) Part-Selective: Tokens only attend to to-
kens of the same part category and class tokens attend to
the tokens in the same class. For all schemes, class refers
to the (known) support classes and (unknown) query class.
Figure 9 shows the diagrams for the four schemes (a-d) and
their performance on Hotels-8k.

The class-selective approach of SMPL outperforms the
other schemes in both the 1-shot and 5-shot settings. The
full attention scheme is underconstrained and no learning
takes place; the classification accuracy of 0.050 corresponds
to chance performance on the 20-way task. A variant of
the full scheme with masked attention between the class to-
kens produces the same result. Of the viable alternatives,
the intra-class scheme results in the worst performance; this
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P I C
P ✓ ✓ ✓
I ✓ ✓ ✓
C ✓ ✓ ✓

(a) Full

P I C
P ✓ ✓ *
I ✓ ✓ *
C * *
(b) Class-Selective

P I C
P * * *
I * * *
C * *

(c) Intra-Class

P I C
P * *
I ✓ *
C * *
(d) Part-Selective

Scheme 1-shot 5-shot
Full .050 .050

Class-Selective .515 .737
Intra-Class .484 .708

Part-Selective .495 .724
(e) Performance

Figure 9. Selective Attention. For each scheme (a-d), the chart
shows the attention relationship between the part (P), image (I),
and class (C) tokens as ✓(full) or * (selective), with blank indicat-
ing no attention. (e) Few-shot performance on Hotels-8k.
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Figure 10. Multi-task training. SMPL performance for specific
(blue) and multi-task (orange) training on CARS and CUB.

suggests that cross-class matching is integral to training.
The part-selective scheme works nearly as well as the class-
selective scheme, suggesting that the interplay of different
part types possible in the class-selective approach provides
additional contextual cues for matching.

4.4.4. Multi-task Training
Most of the competing few-shot approaches follow a dedi-
cated training scheme where the number of shots and ways
must be specified prior to meta-training and the model
can only be deployed for that setting. For example, for
MetaBaseline, deploying a model trained for 1-shot on a

5-shot task results in a 14.6% drop in classification accu-
racy compared to using the matching model. SMPL em-
ploys multi-task training, where the training episode task
sizes are randomly sampled. Figure 10 compares the perfor-
mance of specific versus random multi-task meta-training
using SMPL on two datasets. The blue points show the
performance with the model trained to the corresponding
N -way, K-shot setting and the orange points show the per-
formance using the single model trained with the number
of shots and ways uniformly sampled between Nmin and
Nmax and Kmin and Kmax, respectively. Multi-task SMPL
performs as well the dedicated models, including, surpris-
ingly, outperforming the dedicated model for the 20-way,
3-shot experiment on CARS.

5. Conclusion

We introduced SMPL, a simple combination of semantic
segmentation, attention, and multi-task training for few-
shot learning that outperformed existing methods across
multiple datasets, varying in domain, part overlap, and
intra-class similarity. Through extensive experiments, we
demonstrated that SMPL is highly effective, achieving
state-of-the-art performance in various few-shot settings.

A limitation of our approach is part map generation,
which can involve prompting text-guided segmentation
models to produce part labels at the required level of gran-
ularity and may require careful tuning to ensure consistent
and accurate part segmentation, which can be challenging
for complex or highly variable objects. While the results
of Section 4.4.2 suggest that SMPL is robust to inaccurate
segmentation, this dependency may limit the generalizabil-
ity of the approach, particularly to specialized domains for
which vision-language models are not yet grounded.

Future work will focus on reducing the level of super-
vision for part map generation and exploring ways to dy-
namically adapt the level of part granularity based on task
complexity and/or dataset characteristics. Additionally, we
plan to extend SMPL to multi-modal settings, where it can
leverage both visual and textual data to enhance part-based
representations, potentially improving performance in cases
where visual data alone is insufficient.
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