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CondiMen: A Recipe for HMR. Recovering 3D human meshes from an image is challenging as predictions that look

plausible in 2D can be inaccurate in 3D (ground-truth meshes in gray). To improve predictions, we propose a method leveraging additional

information that may be available — such as camera calibration, body shape, distance to the camera, or multi-view observations.

We

decompose mesh recovery into a human detection and attribute estimation problem, modeling the joint probability of these attributes (pose,
body shape, efc.) using a Bayesian network. It enables efficient inference, compatible with 20FPS real-time applications.

Abstract

Multi-person human mesh recovery (HMR) consists in
detecting all individuals in a given input image, and pre-
dicting the body shape, pose, and 3D location for each de-
tected person. The dominant approaches to this task rely
on neural networks trained to output a single prediction for
each detected individual. In contrast, we propose Condi-
Men, a method that outputs a joint parametric distribution
over likely poses, body shapes, intrinsics and distances to
the camera, using a Bayesian network. This approach of-
fers several advantages. First, a probability distribution can
handle some inherent ambiguities of this task — such as the
uncertainty between a person’s size and their distance to the
camera, or more generally the loss of information that oc-
curs when projecting 3D data onto a 2D image. Second, the
output distribution can be combined with additional infor-
mation to produce better predictions, by using e.g. known
camera or body shape parameters, or by exploiting multi-
view observations. Third, one can efficiently extract the
most likely predictions from this output distribution, making
the proposed approach suitable for real-time applications.
Empirically we find that our model i) achieves performance
on par with or better than the state-of-the-art, ii) captures
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uncertainties and correlations inherent in pose estimation
and iii) can exploit additional information at test time, such
as multi-view consistency or body shape priors. CondiMen
spices up the modeling of ambiguity, using just the right in-
gredients on hand.

1. Introduction

Recovering people characteristics in 3D from images is es-
sential for a variety of applications, ranging from human
behavior analysis to robotic systems in crowded environ-
ments. In this work, we present a method that detects in-
dividuals in images and then predicts 3D meshes, encoding
their pose, body shape, and location.

Human mesh recovery is an ill-posed problem, as differ-
ent meshes could be plausible for a single input image due
to factors like clothing, occlusions, and the projective na-
ture of 2D imaging. In particular, the apparent 2D size of a
person in an image depends on their actual size in 3D, the
distance to the camera, and the camera’s focal length (see
supp. mat. for examples). Despite this uncertainty, state-of-
the-art methods [1, 28, 58, 59] typically predict determin-
istic outputs. These methods are optimized to minimize an
empirical loss over the training data, and in the presence



of ambiguity, they tend to predict average attributes — those
that occur most frequently in the training data — resulting in
a loss of accuracy when faced with aleatoric uncertainty.

A probabilistic framework offers an elegant way to han-
dle such uncertainty. Methods that predict probability dis-
tributions — allowing for the sampling of hypotheses [31, 32,
40] — or that provide confidence estimates [14, 31, 55] have
been proposed in previous work. However, most of them
focus solely on relative pose estimation and fail to consider
the body shape or 3D location, which are critical in many
applications. Moreover, there are scenarios where addi-
tional information such as camera calibration, body shapes
previously scanned, or multi-view image captures are avail-
able and could provide useful cues to improve predictions.
Incorporating such external inputs into existing methods is
unfortunately challenging and often requires iterative opti-
mization techniques [31], limiting their practical applica-
tion.

In this paper, we propose a solution to this issue by
treating mesh recovery as a task of jointly predicting var-
ious attributes (pose, body shape, location, efc.), and by re-
gressing a joint probability distribution over these attributes.
Specifically, we introduce a parametric Bayesian model [3]
illustrated in Fig. | that, given an input image, outputs
a joint probability distribution over camera intrinsics, hu-
man detections, poses, body shapes and 3D locations. This
probabilistic formulation accounts for ambiguities of the
multi-person mesh recovery tasks and allows for the effi-
cient use of external information during inference. Addi-
tionally, multi-view images can seamlessly be used within
our framework to improve 3D mesh recovery — something
which is not straightforward with monocular deterministic
methods. This ability to make multi-view predictions at test
time, despite being trained on monocular data only is advan-
tageous because high-quality, diverse monocular data is far
more abundant and easier to collect than multi-view data,
which often requires complex setups.

For our experiments, we train a model from synthetic-
only data, using BEDLAM [4] as well as images we gener-
ated to further increase data variability. We demonstrate that
the Bayesian nature of our model offers flexibility and the
ability to exploit available external knowledge, at test time.
For instance, we show that leveraging known ground-truth
quantities (e.g. camera intrinsics or body shape) within the
model can improve predictions in a zero-shot manner. It can
also be used to exploit consistency across multiple input im-
ages, for instance by enforcing a constant body shape for a
given person. We validate the performance of our approach
against existing state-of-the-art methods on monocular and
multi-view datasets [22, 23, 38, 62, 70], showing competi-
tive results and the ability to handle uncertainty effectively.
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2. Related work

Human Mesh Recovery from a Single Image. The
development of parametric 3D models [37, 44, 67] has
advanced the field of human pose estimation from 3D
skeleton regression [9, 48, 65] to the prediction of full
human body meshes [15, 19, 27, 28, 30, 35, 50, 73].
More recently, research has focused on estimating expres-
sive human meshes [1, 4, 20, 42, 57] and placing these
meshes within real-world coordinate systems [54, 63]. The
pioneering work by Kanazawa et al. [28] introduces a
method to predict SMPL [37] parameters, along with weak-
perspective re-projection parameters, from a single cropped
image of a person. Subsequent methods have improved
on this approach, either by refining the network architec-
ture [19, 35, 73] or by leveraging new training data and pro-
tocols [4, 42]. Recent advances have also enabled whole-
body pose estimation, i.e., including facial expression and
hand poses [8, 11, 17, 20, 36, 39, 43, 49, 74, 78]. A few
methods now tackle the detection and regression of mul-
tiple human meshes within a single network [1, 47, 57—
59], though these approaches typically produce determin-
istic outputs. In contrast, our proposed Bayesian network
for multi-person whole-body mesh recovery outputs a prob-
ability distribution, allowing it to handle ambiguities, inte-
grate external information, and fuse multi-view predictions
for more robust performance in complex scenarios.

Multi-view Human Mesh Recovery A first category
of methods to tackle multi-view mesh recovery assumes
known camera calibration to extend single view reconstruc-
tion to multi-view settings [5, 12, 76, 79]. In particular,
SMPLIify-X [5] performs 3D reconstruction in a unified co-
ordinate system by iteratively minimizing 2D keypoint re-
projection errors. Some learning-based methods also fol-
low this calibrated approach [10, 24, 60, 68]. For exam-
ple, Iskakov et al. [24] propose a learnable triangulation
solution. A second category of methods addresses the un-
calibrated setup, where predictions from multiple views
are used to estimate camera parameters and merged ei-
ther through handcrafted averaging [34, 45, 71] or learning-
based techniques [46, 79]. Recent adaptive frameworks can
handle both calibrated and uncalibrated settings but are still
limited to single-person [26, 66]. In contrast, our approach
supports multi-person mesh recovery across multiple views.

Probabilistic Human 3D Pose. Early methods ad-
dressed pose uncertainty through optimization-based for-
mulations [55, 56] or by predicting multiple 3D poses from
2D cues [25, 32, 75]. Li and Lee [32] use a Mixture Density
Network to infer a distribution of 3D joints from 2D joints,
while Zhang et al. [75] model separate Gaussian distribu-
tions for 2D keypoints and depth. Recent works leverage
Normalizing Flow (NF) to model pose or shape probabil-
ity distributions [31, 33, 53, 64], with Kolotouros et al. [31]



conditioning NF on image features to predict SMPL param-
eters. Another line of research leverages denoising diffu-
sion models [21, 40, 72] that can account for uncertainties
in depth, body shape, and camera intrinsics. Extracting the
most likely prediction with such approach is often compu-
tationally intensive however. Other strategies include us-
ing multiple prediction heads with a best-of-N loss [2], esti-
mating Gaussian distributions over SMPL parameters [52],
or quantizing human mesh representations [18]. Sengupta
et al. [51] use a hierarchical matrix-Fisher distribution for
each SMPL rotation parameters following the kinematic
tree. In contrast, we introduce a Bayesian network head
that can handle uncertainty while allowing for efficient in-
ference, use of external information, and multi-view predic-
tions in a simple and elegant way.

3. Method

We present our method for detecting people and estimat-
ing their 3D whole-body attributes from a single input im-
age. This method called CondiMen (short for conditional
multi-person mesh recovery) is illustrated in Fig. 1. We
extract image features using a Vision Transformer (ViT)
backbone [13], which we use as conditioning variables in
a joint probability distribution that models people appear-
ing in the image with their different attributes (3D loca-
tion, body shape, efc.). We model this joint distribution as a
trained Bayesian network. At inference, we efficiently de-
tect humans and predict their attributes, by sequentially ex-
tracting modes of the conditional distributions. This proba-
bilistic framework allows us to leverage different informa-
tion available at inference, such as known camera intrinsics
or specific body shapes to enhance prediction accuracy.

3.1. Problem formulation

Human parametrization. To encode human meshes, we
rely on a parametric body model, namely SMPL-X [11].
SMPL-X provides a whole-body parametrization decoupled
into an absolute 3D location ¢, a list of bone orientations 6
modeling the pose, a vector 5 modeling the body shape and
a vector v modeling the facial expression.

Bayesian network. We model the multi-person mesh re-
covery problem as a probabilistic optimization problem.
Given some input image features Z, we aim at predicting
the value of different random variables: the intrinsic param-
eters K of the camera, as well as attributes of people visible
in the image (¢,6,3,v)'. We consider the joint probabil-
ity distribution of these variables conditioned on image fea-
tures, and aim to extract the most likely prediction:

K7£aé787ﬁ/:argma’}( p(Kut79757’7‘I)7 (l)

where p(K,t,0,0,7|Z) denotes the associated proba-
bility density. = While conceptually appealing, model-

'We describe the single-person case here to simplify notations.
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ing such joint distribution from limited data is chal-
lenging due to the high dimension of the representation
space (dim(K)=3, dim(t)=3, dim(8)=11, dim(d)=1,
dim(6)=53x3, dim(y)=10 in our setting).

A classical solution to this curse of dimensionality
is to adopt the naive Bayes assumption, which posits
that different variables are conditionally independent given
the image features. This results in a factorized form:
p(K.,0,3,7|T) ~ p(K|Z)-p(t|T)-p(6]T)-p(BIT) -p(7|T),
where p(z|y) denotes probability density at « conditioned
on the value y. In practice, each conditional density p(-|Z)
is generally assumed to belong to a parametric family, with
parameters that are functions of the input Z, e.g. regressed
using a neural network. Multi-HMR [1] and most other de-
terministic methods [47, 58, 59] can be thought of as special
cases within this framework. They use regression objectives
equivalent to a naive Bayes formulation, assuming probabil-
ity distributions with constant dispersion terms. However, a
key limitation of the naive Bayes assumption is that it ig-
nores inter-variable dependencies. These dependencies are
often crucial for scene understanding: for instance a small
person A appearing the same size in 2D as a taller person
B is likely to be closer to the camera than B, other things
being equal.

To address these challenges, we adopt a relaxed hypothe-
sis by modeling the joint distribution as a Bayesian network,
decoupling variables into a directed acyclic graph of condi-
tional distributions, illustrated in Fig. 1. The ability of deep
neural networks to model complex, high-dimensional data
in an auto-regressive manner has been demonstrated across
various domains including text [7, 61] and images [16]. Our
Bayesian model is inspired by auto-regressive approaches,
encoding relationships between variables in a cascaded
fashion.

3.2. Conditional distributions

We implement our Bayesian network using a cascade of
Multi-Layer Perceptrons (MLP). Each MLP outputs param-
eters of a probability distribution associated with a random
variable of our mesh recovery problem, such as the pose
of a detected person. This distribution is conditioned on
the value of its parent variables in the Bayesian network’s
graphical model, which allows us to, for example, encode
the likelihood of a body pose given a specific body shape
and image detection features (see Fig. | and Fig. 2). In this
section, we present the variables and distributions consid-
ered in our experiments.

Camera intrinsics. We assume a pinhole camera model
with focal length f>0 and principal point p € R2. We
predict the parameters of Gaussian distributions for In(f)
and p , conditioned on image features, specifically on the
[CLS] token output by the ViT image encoder. Considering
In(f) instead of f ensures that f > 0, and is mathematically
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Figure 2. Modeling conditional dependency. We predict proba-
bility distributions for different human attributes (e.g., pose, shape,
distance) and efficiently sample the most likely predictions. Rather
than treating each attribute independently (a), we capture their in-
terdependency by modeling conditional distributions (b), leading
to more coherent results. Our framework can also incorporate ad-
ditional input information when available (such as a known shape
attribute, shown in blue), to further improve prediction accuracy.

equivalent to modeling f with a log-normal distribution.
2D detection. Image features produced by the ViT en-
coder consist of patch tokens P, , defined along a 2D reg-
ular grid G = {(u,v)},—y 4 =1, We encode people
detections as binary variables s, , along this grid, which
indicate whether a reference keypoint of a person projects
into a grid cell (u,v) € G, following the CenterNet object
detection framework [77]. For each variable, we predict a
score p(sy,»|Z) encoding the detection likelihood, which is
regressed from the corresponding patch features P, ,. In
practice, we use the person’s head as reference keypoint
(see Fig. 6a), assuming that at most one person is detected
in each grid cell. At inference, detection is performed via
score thresholding and local non-maxima suppression.
Detection features. For each detected person, we con-
sider a latent variable consisting of image patch features
P, ,, of the detected grid cell (u, v) augmented with camera
ray embeddings, following an approach similar to Multi-
HMR [1]. These detection features thus depend on camera
intrinsics, and will serve as main conditioning variable for
predicting the different human attributes.

Human attributes. SMPL-X parameterizes body shape
and expressions as latent vectors of a PCA space of di-
mension D (D=11 for shape, D=10 for expression, in our
setup). We therefore model the conditional distributions
for shape and expression as multivariate diagonal Gaus-
sians. The absolute 3D location of the person is decom-
posed into 2D coordinates ¢ of the reference keypoint in
the image, and distance d to the image plane. To encode
this distance, we use the variable In(d/ f) referred to as en-
coded depth, and model the conditional distributions for ¢
and In(d/f) as normal distributions. The In(d/f) encod-
ing ensures that d remains positive and allows for stronger
conditioning on camera intrinsics. Lastly, pose is param-
eterized as a tuple § € SO(3)7 of J = 53 bone orienta-
tions. Since SO(3) has a more complex topology than the
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PCA space of shapes and expressions, we model the condi-
tional pose distribution as a product of independent matrix
Fisher distributions IT7_, F (Fy) of density defined for a ro-
tation matrix R € SO(3) and some distribution parameters
F e M3><3(R) by:

pr()(R) = c(F) exp(Te(F ' R)), 0
with ¢(F’) a normalization constant.
Distribution parametrization. To model a D-

dimensional Gaussian distribution A/ (u, 3) while avoiding
degenerate cases, we regress the mode u € R of the
distribution along with dispersion parameters & € RP,
from which we construct the diagonal covariance matrix
> = diag(1 + exp(o))?. Similarly, we decompose the
parameter F' € Ms3,3(R) of a matrix Fisher distribution
F(F) into a mode R € SO(3) and dispersion parameters
(O € SO(3), A € R?®), more suitable to be regressed
by a MLP. These components are combined as follows:
F = RO diag() sigmoid(A))O", where sigmoid denotes
the element-wise sigmoid function and A is a strictly
positive scaling constant (we use A 2 in our experi-
ments). Rotations are regressed as 3x 3 matrices, which are
orthonormalized using a differentiable special Procrustes
operator implemented in RoMa [6].

Normalization constant. The matrix Fisher probability
density function of Eq. (2) is defined up to a constant ¢(F').
To evaluate this constant during training, we use numeri-
cal integration by sampling 36,864 rotations on a uniform
SO(3) grid proposed by Yershova et al. [69].

3.3. Inference

At inference, we extract predictions from our Bayesian net-
work in an efficient feed-forward manner. Given a predicted
distribution for a random variable (e.g. body shape), we
can sample a value for this variable and use it to predict
conditioned distributions (e.g. pose distribution, illustrated
Fig. 2b). We iterate this process until all variables are sam-
pled to generate hypotheses.

Mode extraction In practical applications, one is typi-
cally interested in extracting the most likely predictions
given observations, i.e. solutions of Eq. (1). Finding such
solution is not straightforward however, notably due to the
non-linearities introduced by the MLPs regressing condi-
tional distributions parameters. We therefore use a greedy
but much more efficient alternative. Similar to the sam-
pling procedure described above, we proceed in a feed-
forward iterative manner through the Bayesian graph. We
assign to each variable a value corresponding to the mode
of the associated conditional distribution, and we iterate un-
til all variables are evaluated. This algorithm can be imple-
mented very efficiently with the normal and Fisher distri-
butions considered in our experiments, as mode values are
readily available in the regressed distribution parameters.



(a) Input image (b) Raw prediction

(c) Prediction using GT
intrinsics

(d) Prediction using GT
intrinsics and body shape

(e) Prediction using GT
intrinsics, body shape and distance

Figure 3. Qualitative results. Leveraging additional inputs, such as camera intrinsics and body shape, reduces errors and improves mesh

accuracy. Ground-truth meshes are shown in grey for comparison.

Note that more advanced distributions such as normalizing
flows [31, 53] could be used for greater expressivity, but
these do not enable as efficient mode extraction as the sim-
pler alternatives considered in this work.

Using known variables. A major benefit of modeling
conditional distributions over deterministic regression is the
ability to exploit additional information available. In many
applications, prior knowledge such as camera intrinsic pa-
rameters (from calibration or image metadata), a person’s
body shape (when imaging a known individual), or their
distance from the camera (using depth sensors, for instance)
can be leveraged. During inference, we simply inject the
known values of corresponding variables into our Bayesian
network instead of performing mode extraction, as shown
Fig. 2b, to improve prediction consistency.

Multi-view prior. Better results can be obtained by ex-
ploiting k simultaneous observations of the same person
from different viewpoints, when available. In our experi-
ments, we assume that the camera poses are unknown. We
decompose the pose parameters into a global rigid orien-
tation parameter ¢y and intrinsic, viewpoint-independent,
pose parameters 6’~j = 00_10j, withj =1...J —1. We then
look for the multi-view prediction maximizing the product
of posterior probabilities conditioned by image features:
k
[Ip(E £, (05,61 ...05-1), B,9T"),
i=1
where variables specific to a view ¢ = 1...k are denoted
with superscript i. For greater efficiency, we also solve this
problem greedily. We start by an initial rigid alignment of
predictions (obtained separately for each view) to estimate
global orientations (0f);=1.., and then proceed to find
the optimal intrinsic orientations éj. These are determined
by minimizing the product of Fisher probability densities
Hle PFo;Fi) () for each bone orientation j = 1...J—1
and view ¢ , see Eq. (2). This optimization admits a closed-

3)
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form solution, which consists for each bone orientation 6,
. . S k i i
in the special Procrustes orthonormalization of ) ;_, oFy-

Matching. With multiple input views and multiple people
per view, predictions from each view need to be matched to
ensure they correspond to the same person, before they can
be combined. For simplicity, we rely on Hungarian match-
ing to obtain these matches, with cost matrices computed
from pairs of single-view predictions after rigid alignment.

3.4. Training

We train CondiMen to regress conditional distributions us-
ing an empirical cross-entropy objective function denoted
Loron- This objective function aims to maximize the pre-
dicted log-probability density of the ground truth variables

(K™, s, (50,057, B3, ~y3");) given images i = 1...n:
‘Cprob = 7EZIOgP(K*Za 3*17 (t;la 0;17 ;7‘77;1)3' |Il)7
i—1
“)

with visible people indexed by j. This joint probability den-
sity corresponds to the product of conditional probability
densities predicted in our Bayesian network. We minimize
the objective function by mini-batch gradient descent.

Mode guiding. To achieve better predictions, we found it
beneficial to additionally guide the mode extraction proce-
dure of our method. At training time, we consider some
input camera intrinsics K and generate human attribute hy-
potheses using the procedure described in Sec. 3.3. This
results in human mesh predictions V, composed of |V | ver-
tices centered at 3D location £. Denoting 7k as the 2D pro-
jection operator onto the image plane, we aim to minimize
a reprojection error on the vertices relative to the ground
truth (K*, V* t*): Licpros = |71\2n |7rK(Vn + 1) —
T+ (V} +15)|. For 50% of the mini-batches, we randomly
sample camera intrinsics with an horizontal field-of-view



uniformly chosen between 5 and 170°. For the remain-
ing mini-batches, we use ground-truth camera intrinsics and
introduce an additional objective function to minimize a
human-centered vertices 10ss: Lyesn = \%I Zn |\7n -V |
With the addition of these two deterministic losses, our total
objective function can be expressed as:

E = Acprob + Lmesh + ['reproj' (5)

3.5. Implementation details

Architecture. For our experiments, we use an archi-
tecture inspired by the single-shot framework of Multi-
HMR [1], for its simplicity and state-of-the-art perfor-
mance. The input RGB image is encoded via a transformer-
based architecture to produce 1024-dimensional image
patch features Z, alongside detection features of similar di-
mensions. We train the entire network in an end-to-end
manner to minimize the objective function (5), starting from
DINOv2 [41] weights initialization for the image encoder.
In our default settings, we use a ViT-Large encoder with an
image resolution of 518 x 518 and a patch size of 14 x 14.
The MLPs outputting conditional distributions parameters
take the conditioning variables as input and combine them
through a sum in an hidden space (typically of dimension
256) after linear projection followed by a rectilinear activa-
tion. We use the Adam optimizer [29] with a learning rate of
5-107 and train for 500k steps with a batch size of 16 im-
ages. We consider all image patches with a detection score
above 0.5 as detections in our experiments, after applying a
non-maxima suppression of 3 x 3 patch window.

Training Data. We train models using only synthetic data
in our experiments: synthetic data has the advantage of mit-
igating personal privacy issues, it provides potentially per-
fect ground-truth annotations, and was shown to transfer
well to real word applications in practice [1, 4, 42]. Namely,
we rely on the BEDLAM [4] dataset, which consists of
286k images depicting 951k persons. To further increase
the body shape diversity we additionally render a synthetic
dataset of 8k scenes. It contains images depicting 7 per-
sons on average, with 40 multi-view renderings per scene,
leading to more than 300k images and 2M human instances
rendered. Additional details are provided in the supplemen-
tary material.

Computing Resources. Training our ViT-L model took
about 51 hours using one NVIDIA H100 GPU (36h and
35.5 hours resp. for ViT-B and ViT-S variants). Inference
time depends on the number of people visible in each im-
age. For reference, we report average inference times on the
3DPW dataset in Table 2a.

4. Experiments

To evaluate the effectiveness of our approach, we assess
how CondiMen can leverage additional input information,
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and compare its performance against state-of-the-art meth-
ods. We conduct experiments on single-view datasets
(BDPW [62] and MuPoTS [38]) as well as multi-view
datasets (HI4D [22], Human3.6M [23] and RICH [22]).
We report Mean Per Vertex Error in mm, with or without
Procrustes alignment (PVE and PA-PVE, resp.), along with
mean absolute position error, (PE) in mm. Following previ-
ous works [1, 58, 59], we also provide Mean Per Joint Error
in mm (PJE) on 3DPW and Human3.6M, and Percentage
of Correct Keypoints (PCK) within 15¢m on MuPoTS. For
experiments with additional input information, we convert
SMPL annotations of 3DPW to the SMPL-X format using
the code of Choutas et al. [11]. Note that we do not perform
these experiments on MuPoTS due to the absence of mesh
annotations.

Graph connectivity. Our Bayesian network architecture
introduces conditional dependencies in the estimation of
human attributes. For instance, pose prediction depends on
body shape, as shown in the graphical model in Fig. 1. To
evaluate the effectiveness of this strategy, we compare our
approach with a Naive-Bayes baseline model, in which hu-
man attributes are predicted from detection features inde-
pendently, without conditional dependencies, as illustrated
in Fig. 2. Such baseline is similar to Multi-HMR [1], ex-
cept that it regresses parametric distributions instead of de-
terministic values, ensuring a more meaningful comparison
with CondiMen. Results are summarized in Fig. 4, and
additional results can be found in the supp. mat. Our ap-
proach consistently outperforms the Naive-Bayes baseline,
especially when leveraging additional input information for
certain variables. This result underscores the importance of
modeling dependencies between human attributes.

Additional input information. We report in Fig. 4 per-
formance gains achieved when incorporating additional in-
put information, using the approach described in Sec. 3.3.
As expected, providing distance to the camera in addition to
the camera intrinsics (intrinsics-distance) significantly en-
hances mean absolute vertex position accuracy, reducing
the average PE error across datasets to 91mm for Condi-
Men and 103mm for Naive Bayes. Exploiting body shape
information (intrinsics-shape) similarly boosts relative pose
estimation, yielding up to a 25% reduction in PVE error. It
also brings significant improvement in term of absolute po-
sition error (-57% on HI4D, -57% on RICH for CondiMen),
which suggests that the model is able to capture the relation-
ship between visual appearance, body shape and distance
to the camera, and to exploit this dependency to produce
better predictions (see examples Fig. 1 and 3). In contrast,
the Naive Bayes baseline which does not model attribute
interdependencies shows only minor improvements in ab-
solute position error (-1.6% HI4D and -0.5% on RICH). On
3DPW, using additional shape information has marginal im-
pact, as the model’s initial shape estimates are already rather
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Figure 4. Impact of additional information. We report metrics for mesh reconstruction accuracy (Per Vertex Error, PVE) and 3D
positioning (Positioning Error, PE) across different datasets. Exploiting additional information such as camera intrinsics (intrinsics), body
shape parameters (shape), distance to the camera (distance), or multi-view observations (MV) can significantly reduce prediction errors.
By modeling relationships between variables, CondiMen can consistently achieve lower errors than a Naive Bayes baseline.

A A

(b) Ground truth (c) Single-view (d) Multi-view

(a) Input
Figure 5. Improved prediction using multi-view prior.

close to ground truth. However, using camera intrinsics sig-
nificantly reduces localization error (by 53% between none
and intrinsics). Finally, incorporating external information
regarding camera intrinsics, body shape and distance to the
camera provides further improvements for both methods.
Multi-view. We also report in Fig. 4 results obtained us-
ing a multi-view consistency prior, using the approach de-
scribed in Sec. 3.3. We observe that the use of multi-
ple views results in a smaller PVE error compared to the
monocular case (see also Fig 5), and that providing external
input leads to further performance improvements, with ob-
servations similar to the ones made in the monocular case.
State-of-the-art comparison. Finally, we compare the
performance of our proposed method with recent ap-
proaches in both monocular and multi-view settings. Ta-
ble | presents the performance results as reported by the
authors, except for Multi-HMR [1], which we retrained on
our dataset using a ViT-Large backbone at 518 x 518 reso-
lution for a fair comparison. Following established prac-
tices [79], we report results for Human3.6M, HI4D and
RICH after fine-tuning on each corresponding train set (for
15k steps), and we use ground-truth camera intrinsics for
evaluation [1]. We also report results of a strong multi-view
baseline — denoted Multi-HMR+avg which averages (after a
rigid registration) the shape and expression vectors, as well
as the absolute bone orientations predicted by Multi-HMR
across multiple views. CondiMen achieves highly competi-
tive results in both monocular and multi-view settings, and
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(a) Detection scores (b) Prediction (c) Side-view

Figure 6. Qualitative results on free-to-use internet images. Our
method can produce plausible predictions even when no additional
inputs (such as camera intrinsics or body shape) are available.



Method Whole-body| | Hands| | Face|
Human3.6M | HI4D | ‘ MV ‘ ‘ ! !
Method ‘ MV ‘ PIE PAPIE PVE PAPVE | PVE PA-PVE PVE PA-PVE|PA-PVE | PA-PVE
- MUC [79] - 417 8.2 4.1
gr(‘)’&’;)’"; gi 1 65.1 437 - T iss Multi-HMR [1] 694 382 | 74 | 37
Lo - - - - O Ours 654 365 73 3.6
BEV [59] - - - - |1s39 -
HMR2.0 [19] 500 324 - - |42 - MUC [79] V| - 335 6.7 32
Yuetal. [71] ~ 416 - 464 - - Multi-HMR [1]+avg | v | 617  29.5 6.8 35
SMPLer-X[8] - 389 - 428 - - Ours v |518 279 | 67 34
MUC [79] ~ 443~ 458 - - -
Multi-HMR [1] 50.8 400 622 433 | 490 362 (b) Body-part specific results on RICH.
Ours 490 389 591 422 | 488 357 o 3DPW | MuPoTS POKT
ProHMR [31] Vo622 345 - - - - PJE  PA-PIE | Matched  All
Yuetal. [71] v - 330 34.4 -
| - = - - ProHMR [31] - 59.8 - -
SMPLer-X[8] +avg | v/ 334 371 ROMP [58] 767 473 699 722
MUC [79] V| - 319 - 334 - -
- ] BEV [59] 785 469 752 702
Calib-free PaFF [26] v’ 448 282 - - - .
2.2 Multi-HMR [1] | 706  47.5 776 827
OUVR [66] vl - 21 - 289 - - HMR2.0 110 Sl 543 176
Muli-HMR []+avg | v |428 300 513 325 | 5L1 287 01191 ' : - -
Ours v |41 289 490 312 | 447 278 POCO [14] 0.7 428 - -
: 2.2 Ours 695 464 847 740

(a) Multi-view setting.

(c) Monocular setting.

Table 1. Comparison with state-of-the-art methods in monocular and multi-view settings.

we provide qualitative examples in Fig. 3 and 6.

4.1. Additional ablations

Backbone. Tab. 2a shows the results when experiment-
ing with various image encoder backbones. As expected,
larger backbones yield better results: a ViT-Large model
performs better than a ViT-Base which itself performs bet-
ter than ViT-Small, likely due to the large scale of the train-
ing sets. However, these improvements in prediction qual-
ity come with additional computation costs both at training
and inference time. Still, inference takes less than 50ms
per image on average with a ViT-Large backbone, making
it suitable for some real-time applications.

Training procedure. We also conduct ablation studies on
various aspects of our training procedure, with results pre-
sented in Table 2b. First, we remove the mode-guiding ob-
jectives described in Sec. 3.4 and observe a drop in per-
formance across all datasets. We also train a variant of
our model without the additional synthetic data we gener-
ated. While this variant performs better on Human3.6M
and HI4D, its performance is worse on RICH, 3DPW, and
MuPoTS. We posit this is due to the presence of less stan-
dard camera parameters or body shape attributes in these
benchmarks, for which the diversity of additional training
data proves beneficial.

Uncertainty modeling Empirically, we observe a corre-
lation between the predicted likelihood p(K,t, 6, 3,~|T)
and the prediction errors (see supp. mat.). This suggests
that the proposed model is able to estimate prediction uncer-
tainty to some extent, an information that could be valuable
for downstream applications.
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Backbone Human3.6M| HI4D| RICH| 3DPW,| MuPoTS? Inference| (ms)

ViT-Small 117.9 962 1142 832 67.8 29
ViT-Base 99.7 933 1082  76.6 69.7 31
ViT-Large 88.8 770 928 69.5 74.0 50
(a) Backbone size.

Training Human3.6M| HI4D| RICH| 3DPW/] MuPoTS1
Ours 88.8 77.0  92.8 69.5 74.0
w/o mode guiding 92.4 78.5 106.1 75.3 71.8
w/o additional synth. data 75.9 73.8 964 74.4 71.5

(b) Training.
Table 2. Ablation study. We report PVE metric in a multi-
view setting on Human3.6M, HI4D and RICH. We report PJE for
3DPW and PCK-AIll for MuPoTS in a monocular setting. Infer-
ence durations are measured with an NVidia V100 GPU.

5. Discussion

We propose a novel approach for multi-person human mesh
recovery, based on a Bayesian network. This method en-
ables the seamless incorporation of additional input infor-
mation — such as camera intrinsics, body shape, distance
from the camera, or even multi-view acquisitions — to im-
prove the predictions. We believe this has a significant prac-
tical value, as such data is readily available in many real-
world applications. Our approach achieves on par or bet-
ter performances than existing state-of-the-art methods on
standard benchmarks, while still maintaining real-time ca-
pabilities. The motivation behind our work was to exploit
interdependencies between various attributes in the mesh
recovery problem (e.g. detection, camera parameters, and
pose estimation). To this end, we adopted a Bayesian net-
work framework, which is conceptually simple and supports
highly efficient inference. Our findings confirms the effec-
tiveness of this approach and suggest that exploring more
sophisticated probabilistic modeling techniques could be a
promising direction for future research.
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